Third tutorial¶
Crystalline silicon.¶
This tutorial aims at showing you how to get the following physical properties, for an insulator:
- the total energy,
 - the lattice parameter,
 - the band structure (actually, the Kohn-Sham band structure).
 
You will learn about the use of k-points, as well as the smearing of the plane-wave kinetic energy cut-off.
Visualisation tools are NOT covered in this tutorial. Powerful visualisation procedures have been developed in the Abipy context, relying on matplotlib. See the README of Abipy and the Abipy tutorials.
This tutorial should take about 1 hour.
Note
Supposing you made your own installation of ABINIT, the input files to run the examples are in the ~abinit/tests/ directory where ~abinit is the absolute path of the abinit top-level directory. If you have NOT made your own install, ask your system administrator where to find the package, especially the executable and test files.
In case you work on your own PC or workstation, to make things easier, we suggest you define some handy environment variables by executing the following lines in the terminal:
export ABI_HOME=Replace_with_absolute_path_to_abinit_top_level_dir # Change this line
export PATH=$ABI_HOME/src/98_main/:$PATH      # Do not change this line: path to executable
export ABI_TESTS=$ABI_HOME/tests/             # Do not change this line: path to tests dir
export ABI_PSPDIR=$ABI_TESTS/Psps_for_tests/  # Do not change this line: path to pseudos dir
Examples in this tutorial use these shell variables: copy and paste
the code snippets into the terminal (remember to set ABI_HOME first!) or, alternatively,
source the set_abienv.sh script located in the ~abinit directory:
source ~abinit/set_abienv.sh
The ‘export PATH’ line adds the directory containing the executables to your PATH so that you can invoke the code by simply typing abinit in the terminal instead of providing the absolute path.
To execute the tutorials, create a working directory (Work*) and
copy there the input files of the lesson.
Most of the tutorials do not rely on parallelism (except specific tutorials on parallelism). However you can run most of the tutorial examples in parallel with MPI, see the topic on parallelism.
Computing the total energy of silicon at a fixed number of k-points¶
Before beginning, you might consider working in a different subdirectory, as for tutorial 1 or 2. Why not Work3?
The following commands will move you to your working directory, create the Work3 directory, and move you into that directory as you did in the first and second tutorials. Then, we copy the file tbase3_1.abi inside the Work3 directory. The commands are:
cd $ABI_TESTS/tutorial/Input
mkdir Work3
cd Work3
cp ../tbase3_1.abi .
This is your input file:
# Crystalline silicon : computation of the total energy # #Definition of the unit cell acell 3*10.18 # This is equivalent to 10.18 10.18 10.18 rprim 0.0 0.5 0.5 # In tutorials 1 and 2, these primitive vectors 0.5 0.0 0.5 # (to be scaled by acell) were 1 0 0 0 1 0 0 0 1 0.5 0.5 0.0 # that is, the default. #Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. pp_dirpath "$ABI_PSPDIR" # This is the path to the directory were # pseudopotentials for tests are stored pseudos "Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8" # Name and location of the pseudopotential #Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/4 1/4 1/4 # Triplet giving the REDUCED coordinate of atom 2. # Note the use of fractions (remember the limited # interpreter capabilities of ABINIT) #Definition of the planewave basis set ecut 12.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the k-point grid kptopt 1 # Option for the automatic generation of k points, taking # into account the symmetry ngkpt 2 2 2 # This is a 2x2x2 grid based on the primitive vectors nshiftk 4 # of the reciprocal space (that form a BCC lattice !), # repeated four times, with different shifts : shiftk 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 # In cartesian coordinates, this grid is simple cubic, and # actually corresponds to the # so-called 4x4x4 Monkhorst-Pack grid #Definition of the SCF procedure nstep 10 # Maximal number of SCF cycles toldfe 1.0d-6 # Will stop when, twice in a row, the difference # between two consecutive evaluations of total energy # differ by less than toldfe (in Hartree) # This value is way too large for most realistic studies of materials diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. ############################################################## # This section is used only for regression testing of ABINIT # ############################################################## #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% tbase3_1.abo, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00 #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = Crystalline silicon: computation of the total energy #%%<END TEST_INFO>
You should edit it, read it carefully, have a look at the following new input variables and their explanation:
- rprim
 - xred (used instead of xcart)
 - kptopt, ngkpt, nshiftk, shiftk, kptrlatt (not easy, take your time!)
 - diemac (a different value is used for this variable compare to previous calculations where isolated molecules were considered).
 
Note also the following: you will work at fixed ecut (12Ha). It is implicit that in real life, you should do a convergence test with respect to ecut. Here, a suitable ecut is given to you; it corresponds to the suggested ecut for this pseudopotential according to the PseudoDojo website where the silicon pseudopotential was taken. When we will relax the lattice parameter, it will result in a lattice parameter that is 0.2% off of the experimental value.
When you have read the input file, you can run the code, as usual:
abinit tbase3_1.abi > log 2> err &
Then, read the output file, and note the total energy:
etotal   -8.5187390642E+00
Starting the convergence study with respect to k-points¶
There is, of course, a convergence study associated with the sampling of the Brillouin zone. You should examine different grids, of increasing resolution. You might try the following series of grids:
ngkpt1  2 2 2
ngkpt2  4 4 4
ngkpt3  6 6 6
ngkpt4  8 8 8
However, the associated number of k-points in the irreducible Brillouin zone grows very fast. It is
nkpt1  2
nkpt2 10
nkpt3 28
nkpt4 60
Abinit computes automatically this number of k-points, from the definition of the grid and the symmetries. You might nevertheless define an input nkpt value in the input file, in which case the code will compare its computed value (from the grid) with this input value.
We take this opportunity to examine the behaviour of abinit when a problem is detected. Let us suppose that with ngkpt 4 4 4, one mentions nkpt 2. The input file tbase3_2.abi is an example:
# Crystalline silicon : computation of the total energy # # This input file will NOT work : nkpt does not agree # with ngkpt and shiftk. The error message will be given # in the "log" file. #Definition of the unit cell acell 3*10.18 # This is equivalent to 10.18 10.18 10.18 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 #Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. pp_dirpath "$ABI_PSPDIR" # This is the path to the directory were # pseudopotentials for tests are stored pseudos "Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8" # Name and location of the pseudopotential #Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/4 1/4 1/4 # Triplet giving the REDUCED coordinate of atom 2. #Definition of the planewave basis set ecut 12.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the k-point grid nkpt 2 # Number of k points (It does not agree with ngkpt and shiftk) kptopt 1 # Option for the automatic generation of k points, taking # into account the symmetry ngkpt 4 4 4 # This is a 4x4x4 FCC grid, based on the primitive vectors nshiftk 4 # of the reciprocal space. For a FCC real space lattice, # like the present one, it actually corresponds to the # so-called 8x8x8 Monkhorst-Pack grid. shiftk 0.5 0.5 0.5 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 #Definition of the SCF procedure nstep 10 # Maximal number of SCF cycles toldfe 1.0d-6 # Will stop when, twice in a row, the difference # between two consecutive evaluations of total energy # differ by less than toldfe (in Hartree) # This value is way too large for most realistic studies of materials diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. ############################################################## # This section is used only for regression testing of ABINIT # ############################################################## #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% expected_failure = yes #%% [files] #%% files_to_test = #%% tbase3_2.abo, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00 #%% [paral_info] #%% max_nprocs = 1 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = #%% Crystalline silicon : computation of the total energy #%% #%% This input file will NOT work : nkpt does not agree #%% with ngkpt and shiftk. The error message will be given #%% in the "log" file. #%%<END TEST_INFO>
The message that you get a few dozen of lines before the end of the log file is:
--- !BUG
src_file: m_kpts.F90
src_line: 1417
mpi_rank: 0
message: |
    The argument nkpt = 2, does not match
    the number of k points generated by kptopt, kptrlatt, shiftk,
    and the eventual symmetries, that is, nkpt= 10.
    However, note that it might be due to the user,
    if nkpt is explicitely defined in the input file.
    In this case, please check your input file.
...
  Action: contact ABINIT group (please attach the output of `abinit -b`)
This is a typical abinit error message. It states what is the problem that causes the code to stop, then suggests that it might be due to an error in the input file, namely, an erroneous value of nkpt. The expected value, nkpt 10 is mentioned before the notice that the input file might be erroneous. Then, the file at which the problem occurred is mentioned, as well as the number of the line in that file.
As the computation of nkpt for specific grids of k-points is not an easy task, while the even more important selection of specific economical grids (the best ratio between the accuracy of the integration in the Brillouin zone and the number of k-points) is more difficult, some help to the user is provided by ABINIT.
The code is able to examine automatically different k-point grids, and to propose the best grids for integration. This is described in the abinit help file, see the input variable prtkpt, and the associated characterisation of the integral accuracy, described in kptrlen.
Tip
The generation of lists of k-point sets is done in different test cases, in $ABI_TESTS/v2.
You can directly have a look at the output files in $ABI_TESTS/v2/Refs,
the output files for the tests 61 to 73.
When one begins the study of a new material, it is strongly advised to examine first the list of k-points grids, and select (at least) three efficient ones, for the k-point convergence study.
Do not forget that the CPU time will be linearly proportional to the number of k-points to be treated: using 10 k-points will take five times more than using 2 k-points. Even for a similar accuracy of the Brillouin zone integration (that is to say for about the same value of kptrlen), there might be a grid that will reduce to 10 k-points in the irreducible Brillouin zone and another that will reduce to 2 k-points in the irreducible Brillouin zone. The latter is clearly to be preferred from a computational perspective!
Convergence study with respect to k-points¶
In order to understand k-point grids, you should read [Monkhorst1976]. Well, maybe not immediately. In the meantime, you can try the above-mentioned convergence study.
The input file tbase3_3.abi is an example, while $ABI_TESTS/tutorial/Refs/tbase3_3.abo is a reference output file.
cd $ABI_TESTS/tutorial/Work3
cp ../tbase3_3.abi .
# Crystalline silicon : computation of the total energy # Convergence with respect to the number of k points. ndtset 4 #Definition of the unit cell acell 3*10.18 # This is equivalent to 10.18 10.18 10.18 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 #Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. pp_dirpath "$ABI_PSPDIR" # This is the path to the directory were # pseudopotentials for tests are stored pseudos "Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8" # Name and location of the pseudopotential #Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/4 1/4 1/4 # Triplet giving the REDUCED coordinate of atom 2. #Definition of the planewave basis set ecut 12.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the k-point grid kptopt 1 # Option for the automatic generation of k points, taking # into account the symmetry nshiftk 4 shiftk 0.5 0.5 0.5 # These shifts will be the same for all grids 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 ngkpt1 2 2 2 # Definition of the different grids ngkpt2 4 4 4 ngkpt3 6 6 6 ngkpt4 8 8 8 getwfk -1 # This is to speed up the calculation, by restarting # from previous wavefunctions, transferred from the old # to the new k-points. #Definition of the SCF procedure nstep 10 # Maximal number of SCF cycles toldfe 1.0d-6 # Will stop when, twice in a row, the difference # between two consecutive evaluations of total energy # differ by less than toldfe (in Hartree) # This value is way too large for most realistic studies of materials diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. ############################################################## # This section is used only for regression testing of ABINIT # ############################################################## #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% tbase3_3.abo, tolnlines= 2, tolabs= 1.0e-8, tolrel= 3.0e-9 #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = #%% Crystalline silicon : computation of the total energy #%% Convergence with respect to the number of k points. #%%<END TEST_INFO>
.Version 9.3.3 of ABINIT 
.(MPI version, prepared for a x86_64_linux_gnu9.3 computer) 
.Copyright (C) 1998-2022 ABINIT group . 
 ABINIT comes with ABSOLUTELY NO WARRANTY.
 It is free software, and you are welcome to redistribute it
 under certain conditions (GNU General Public License,
 see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
 ABINIT is a project of the Universite Catholique de Louvain,
 Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
 Please read https://docs.abinit.org/theory/acknowledgments for suggested
 acknowledgments of the ABINIT effort.
 For more information, see https://www.abinit.org .
.Starting date : Wed 23 Dec 2020.
- ( at 23h37 )
- input  file    -> /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/cote_beauty/tests/TestBot_MPI1/tutorial_tbase3_3/tbase3_3.abi
- output file    -> tbase3_3.abo
- root for input  files -> tbase3_3i
- root for output files -> tbase3_3o
 DATASET    1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
 Values of the parameters that define the memory need for DATASET  1.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       6
     lnmax =       6     mgfft =      24  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      48    n1xccc =    2501    ntypat =       1
    occopt =       1   xclevel =       1
-    mband =           5        mffmem =           1         mkmem =           2
       mpw =         525          nfft =       13824          nkpt =           2
================================================================================
P This job should need less than                       4.782 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.082 Mbytes ; DEN or POT disk file :      0.107 Mbytes.
================================================================================
 DATASET    2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
 Values of the parameters that define the memory need for DATASET  2.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       6
     lnmax =       6     mgfft =      24  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      48    n1xccc =    2501    ntypat =       1
    occopt =       1   xclevel =       1
-    mband =           5        mffmem =           1         mkmem =          10
       mpw =         534          nfft =       13824          nkpt =          10
================================================================================
P This job should need less than                       5.167 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.409 Mbytes ; DEN or POT disk file :      0.107 Mbytes.
================================================================================
 DATASET    3 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
 Values of the parameters that define the memory need for DATASET  3.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       6
     lnmax =       6     mgfft =      24  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      48    n1xccc =    2501    ntypat =       1
    occopt =       1   xclevel =       1
-    mband =           5        mffmem =           1         mkmem =          28
       mpw =         534          nfft =       13824          nkpt =          28
================================================================================
P This job should need less than                       6.024 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      1.143 Mbytes ; DEN or POT disk file :      0.107 Mbytes.
================================================================================
 DATASET    4 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
 Values of the parameters that define the memory need for DATASET  4.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       6
     lnmax =       6     mgfft =      24  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      48    n1xccc =    2501    ntypat =       1
    occopt =       1   xclevel =       1
-    mband =           5        mffmem =           1         mkmem =          60
       mpw =         534          nfft =       13824          nkpt =          60
================================================================================
P This job should need less than                       7.548 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      2.446 Mbytes ; DEN or POT disk file :      0.107 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values                                      
-   iomode0 =  0 , fftalg0 =312 , wfoptalg0 =  0
-
- outvars: echo of global parameters not present in the input file              
-  max_nthreads =    0
-
 -outvars: echo values of preprocessed input variables --------
            acell      1.0180000000E+01  1.0180000000E+01  1.0180000000E+01 Bohr
              amu      2.80855000E+01
           diemac      1.20000000E+01
             ecut      1.20000000E+01 Hartree
-          fftalg         312
           getwfk          -1
              ixc       -1012
           jdtset        1    2    3    4
              kpt1    -2.50000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  0.00000000E+00  0.00000000E+00
              kpt2    -1.25000000E-01 -2.50000000E-01  0.00000000E+00
                      -1.25000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01 -3.75000000E-01  0.00000000E+00
                      -1.25000000E-01 -3.75000000E-01  1.25000000E-01
                      -1.25000000E-01  2.50000000E-01  0.00000000E+00
                      -2.50000000E-01  3.75000000E-01  0.00000000E+00
                      -3.75000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  5.00000000E-01  1.25000000E-01
                      -1.25000000E-01  0.00000000E+00  0.00000000E+00
                      -3.75000000E-01  0.00000000E+00  0.00000000E+00
              kpt3    -8.33333333E-02 -1.66666667E-01  0.00000000E+00
                      -8.33333333E-02 -3.33333333E-01  0.00000000E+00
                      -1.66666667E-01 -2.50000000E-01  0.00000000E+00
                      -8.33333333E-02 -2.50000000E-01  8.33333333E-02
                      -8.33333333E-02  5.00000000E-01  0.00000000E+00
                      -1.66666667E-01 -4.16666667E-01  0.00000000E+00
                      -8.33333333E-02 -4.16666667E-01  8.33333333E-02
                      -2.50000000E-01 -3.33333333E-01  0.00000000E+00
                      -1.66666667E-01 -3.33333333E-01  8.33333333E-02
                      -8.33333333E-02 -3.33333333E-01  1.66666667E-01
                      -8.33333333E-02  3.33333333E-01  0.00000000E+00
                      -1.66666667E-01  4.16666667E-01  0.00000000E+00
                      -2.50000000E-01  5.00000000E-01  0.00000000E+00
                      -1.66666667E-01  5.00000000E-01  8.33333333E-02
                      -3.33333333E-01 -4.16666667E-01  0.00000000E+00
                      -2.50000000E-01 -4.16666667E-01  8.33333333E-02
                      -1.66666667E-01 -4.16666667E-01  1.66666667E-01
                      -8.33333333E-02 -4.16666667E-01  2.50000000E-01
                      -8.33333333E-02  1.66666667E-01  0.00000000E+00
                      -1.66666667E-01  2.50000000E-01  0.00000000E+00
                      -2.50000000E-01  3.33333333E-01  0.00000000E+00
                      -3.33333333E-01  4.16666667E-01  0.00000000E+00
                      -4.16666667E-01  5.00000000E-01  0.00000000E+00
                      -3.33333333E-01  5.00000000E-01  8.33333333E-02
                      -2.50000000E-01  5.00000000E-01  1.66666667E-01
                      -8.33333333E-02  0.00000000E+00  0.00000000E+00
                      -2.50000000E-01  0.00000000E+00  0.00000000E+00
                      -4.16666667E-01  0.00000000E+00  0.00000000E+00
              kpt4    -6.25000000E-02 -1.25000000E-01  0.00000000E+00
                      -6.25000000E-02 -2.50000000E-01  0.00000000E+00
                      -1.25000000E-01 -1.87500000E-01  0.00000000E+00
                      -6.25000000E-02 -1.87500000E-01  6.25000000E-02
                      -6.25000000E-02 -3.75000000E-01  0.00000000E+00
                      -1.25000000E-01 -3.12500000E-01  0.00000000E+00
                      -6.25000000E-02 -3.12500000E-01  6.25000000E-02
                      -1.87500000E-01 -2.50000000E-01  0.00000000E+00
                      -1.25000000E-01 -2.50000000E-01  6.25000000E-02
                      -6.25000000E-02 -2.50000000E-01  1.25000000E-01
                      -6.25000000E-02  5.00000000E-01  0.00000000E+00
                      -1.25000000E-01 -4.37500000E-01  0.00000000E+00
                      -6.25000000E-02 -4.37500000E-01  6.25000000E-02
                      -1.87500000E-01 -3.75000000E-01  0.00000000E+00
                      -1.25000000E-01 -3.75000000E-01  6.25000000E-02
                      -6.25000000E-02 -3.75000000E-01  1.25000000E-01
                      -2.50000000E-01 -3.12500000E-01  0.00000000E+00
                      -1.87500000E-01 -3.12500000E-01  6.25000000E-02
                      -1.25000000E-01 -3.12500000E-01  1.25000000E-01
                      -6.25000000E-02 -3.12500000E-01  1.87500000E-01
                      -6.25000000E-02  3.75000000E-01  0.00000000E+00
                      -1.25000000E-01  4.37500000E-01  0.00000000E+00
                      -1.87500000E-01  5.00000000E-01  0.00000000E+00
                      -1.25000000E-01  5.00000000E-01  6.25000000E-02
                      -2.50000000E-01 -4.37500000E-01  0.00000000E+00
                      -1.87500000E-01 -4.37500000E-01  6.25000000E-02
                      -1.25000000E-01 -4.37500000E-01  1.25000000E-01
                      -6.25000000E-02 -4.37500000E-01  1.87500000E-01
                      -3.12500000E-01 -3.75000000E-01  0.00000000E+00
                      -2.50000000E-01 -3.75000000E-01  6.25000000E-02
                      -1.87500000E-01 -3.75000000E-01  1.25000000E-01
                      -1.25000000E-01 -3.75000000E-01  1.87500000E-01
                      -6.25000000E-02 -3.75000000E-01  2.50000000E-01
                      -6.25000000E-02  2.50000000E-01  0.00000000E+00
                      -1.25000000E-01  3.12500000E-01  0.00000000E+00
                      -1.87500000E-01  3.75000000E-01  0.00000000E+00
                      -2.50000000E-01  4.37500000E-01  0.00000000E+00
                      -3.12500000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  5.00000000E-01  6.25000000E-02
                      -1.87500000E-01  5.00000000E-01  1.25000000E-01
                      -3.75000000E-01 -4.37500000E-01  0.00000000E+00
                      -3.12500000E-01 -4.37500000E-01  6.25000000E-02
                      -2.50000000E-01 -4.37500000E-01  1.25000000E-01
                      -1.87500000E-01 -4.37500000E-01  1.87500000E-01
                      -1.25000000E-01 -4.37500000E-01  2.50000000E-01
                      -6.25000000E-02 -4.37500000E-01  3.12500000E-01
                      -6.25000000E-02  1.25000000E-01  0.00000000E+00
                      -1.25000000E-01  1.87500000E-01  0.00000000E+00
                      -1.87500000E-01  2.50000000E-01  0.00000000E+00
                      -2.50000000E-01  3.12500000E-01  0.00000000E+00
                       outvar_i_n : Printing only first  50 k-points.
         kptrlatt1       2   -2    2     -2    2    2     -2   -2    2
         kptrlatt2       4   -4    4     -4    4    4     -4   -4    4
         kptrlatt3       6   -6    6     -6    6    6     -6   -6    6
         kptrlatt4       8   -8    8     -8    8    8     -8   -8    8
          kptrlen1     2.03600000E+01
          kptrlen2     4.07200000E+01
          kptrlen3     6.10800000E+01
          kptrlen4     8.14400000E+01
P           mkmem1          2
P           mkmem2         10
P           mkmem3         28
P           mkmem4         60
            natom           2
            nband1          5
            nband2          5
            nband3          5
            nband4          5
           ndtset           4
            ngfft          24      24      24
             nkpt1          2
             nkpt2         10
             nkpt3         28
             nkpt4         60
            nstep          10
             nsym          48
           ntypat           1
              occ1     2.000000  2.000000  2.000000  2.000000  0.000000
              occ2     2.000000  2.000000  2.000000  2.000000  0.000000
              occ3     2.000000  2.000000  2.000000  2.000000  0.000000
              occ4     2.000000  2.000000  2.000000  2.000000  0.000000
            rprim      0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
                       5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
                       5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
           shiftk      5.00000000E-01  5.00000000E-01  5.00000000E-01
          spgroup         227
           symrel      1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
                       0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0
                      -1  0  0  -1  0  1  -1  1  0       1  0  0   1  0 -1   1 -1  0
                       0  1 -1   1  0 -1   0  0 -1       0 -1  1  -1  0  1   0  0  1
                      -1  0  0  -1  1  0  -1  0  1       1  0  0   1 -1  0   1  0 -1
                       0 -1  1   1 -1  0   0 -1  0       0  1 -1  -1  1  0   0  1  0
                       1  0  0   0  0  1   0  1  0      -1  0  0   0  0 -1   0 -1  0
                       0  1 -1   0  0 -1   1  0 -1       0 -1  1   0  0  1  -1  0  1
                      -1  0  1  -1  1  0  -1  0  0       1  0 -1   1 -1  0   1  0  0
                       0 -1  0   1 -1  0   0 -1  1       0  1  0  -1  1  0   0  1 -1
                       1  0 -1   0  0 -1   0  1 -1      -1  0  1   0  0  1   0 -1  1
                       0  1  0   0  0  1   1  0  0       0 -1  0   0  0 -1  -1  0  0
                       1  0 -1   0  1 -1   0  0 -1      -1  0  1   0 -1  1   0  0  1
                       0 -1  0   0 -1  1   1 -1  0       0  1  0   0  1 -1  -1  1  0
                      -1  0  1  -1  0  0  -1  1  0       1  0 -1   1  0  0   1 -1  0
                       0  1  0   1  0  0   0  0  1       0 -1  0  -1  0  0   0  0 -1
                       0  0 -1   0  1 -1   1  0 -1       0  0  1   0 -1  1  -1  0  1
                       1 -1  0   0 -1  1   0 -1  0      -1  1  0   0  1 -1   0  1  0
                       0  0  1   1  0  0   0  1  0       0  0 -1  -1  0  0   0 -1  0
                      -1  1  0  -1  0  0  -1  0  1       1 -1  0   1  0  0   1  0 -1
                       0  0  1   0  1  0   1  0  0       0  0 -1   0 -1  0  -1  0  0
                       1 -1  0   0 -1  0   0 -1  1      -1  1  0   0  1  0   0  1 -1
                       0  0 -1   1  0 -1   0  1 -1       0  0  1  -1  0  1   0 -1  1
                      -1  1  0  -1  0  1  -1  0  0       1 -1  0   1  0 -1   1  0  0
            tnons      0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
           toldfe      1.00000000E-06 Hartree
            typat      1  1
              wtk1       0.75000    0.25000
              wtk2       0.09375    0.09375    0.09375    0.18750    0.09375    0.09375
                         0.09375    0.18750    0.03125    0.03125
              wtk3       0.02778    0.02778    0.02778    0.05556    0.02778    0.02778
                         0.05556    0.02778    0.05556    0.05556    0.02778    0.02778
                         0.02778    0.05556    0.02778    0.05556    0.05556    0.05556
                         0.02778    0.02778    0.02778    0.02778    0.02778    0.05556
                         0.05556    0.00926    0.00926    0.00926
              wtk4       0.01172    0.01172    0.01172    0.02344    0.01172    0.01172
                         0.02344    0.01172    0.02344    0.02344    0.01172    0.01172
                         0.02344    0.01172    0.02344    0.02344    0.01172    0.02344
                         0.02344    0.02344    0.01172    0.01172    0.01172    0.02344
                         0.01172    0.02344    0.02344    0.02344    0.01172    0.02344
                         0.02344    0.02344    0.02344    0.01172    0.01172    0.01172
                         0.01172    0.01172    0.02344    0.02344    0.01172    0.02344
                         0.02344    0.02344    0.02344    0.02344    0.01172    0.01172
                         0.01172    0.01172
                       outvars : Printing only first  50 k-points.
           xangst      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.3467559959E+00  1.3467559959E+00  1.3467559959E+00
            xcart      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5450000000E+00  2.5450000000E+00  2.5450000000E+00
             xred      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
            znucl       14.00000
================================================================================
 chkinp: Checking input parameters for consistency, jdtset=   1.
 chkinp: Checking input parameters for consistency, jdtset=   2.
 chkinp: Checking input parameters for consistency, jdtset=   3.
 chkinp: Checking input parameters for consistency, jdtset=   4.
================================================================================
== DATASET  1 ==================================================================
-   mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 525, }
cutoff_energies: {ecut:  12.0, pawecutdg:  -1.0, }
electrons: {nelect:   8.00000000E+00, charge:   0.00000000E+00, occopt:   1.00000000E+00, tsmear:   1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  5.0900000  5.0900000  G(1)= -0.0982318  0.0982318  0.0982318
 R(2)=  5.0900000  0.0000000  5.0900000  G(2)=  0.0982318 -0.0982318  0.0982318
 R(3)=  5.0900000  5.0900000  0.0000000  G(3)=  0.0982318  0.0982318 -0.0982318
 Unit cell volume ucvol=  2.6374446E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  24  24  24
         ecut(hartree)=     12.000   => boxcut(ratio)=   2.13807
--- Pseudopotential description ------------------------------------------------
- pspini: atom type   1  psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/cote_beauty/tests/Psps_for_tests/Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8
- pspatm: opening atomic psp file    /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/cote_beauty/tests/Psps_for_tests/Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8
- Si    ONCVPSP-3.3.0  r_core=   1.60303   1.72197   1.91712
- 14.00000   4.00000    171102                znucl, zion, pspdat
    8   -1012    2    4       600   0.00000   pspcod,pspxc,lmax,lloc,mmax,r2well
    5.99000000000000    4.00000000000000    0.00000000000000   rchrg,fchrg,qchrg
     nproj     2     2     2
     extension_switch     1
  pspatm : epsatm=    6.67004110
         --- l  ekb(1:nproj) -->
             0    5.565958    0.856966
             1    2.726111    0.629828
             2   -2.124804   -0.444604
 pspatm: atomic psp has been read  and splines computed
   1.06720658E+02                                ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are     520.500     520.494
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5152781797145    -8.515E+00 6.925E-03 6.424E+00
 ETOT  2  -8.5186801687011    -3.402E-03 1.548E-05 1.655E-01
 ETOT  3  -8.5187388273282    -5.866E-05 1.588E-06 1.346E-03
 ETOT  4  -8.5187390561264    -2.288E-07 5.608E-08 2.251E-05
 ETOT  5  -8.5187390642399    -8.113E-09 3.658E-10 2.688E-07
 At SCF step    5, etot is converged : 
  for the second time, diff in etot=  8.113E-09 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -2.37540200E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -2.37540200E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -2.37540200E-05  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0900000,   5.0900000, ]
- [  5.0900000,   0.0000000,   5.0900000, ]
- [  5.0900000,   5.0900000,   0.0000000, ]
lattice_lengths: [   7.19835,    7.19835,    7.19835, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6374446E+02
convergence: {deltae: -8.113E-09, res2:  2.688E-07, residm:  3.658E-10, diffor: null, }
etotal    :  -8.51873906E+00
entropy   :   0.00000000E+00
fermie    :   1.53400548E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -2.37540200E-05,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -2.37540200E-05,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -2.37540200E-05, ]
pressure_GPa:   6.9887E-01
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.80246868
    2        2.00000          1.80246868
================================================================================
 ----iterations are completed or convergence reached----
 Mean square residual over all n,k,spin=   98.529E-12; max=  36.579E-11
 reduced coordinates (array xred) for    2 atoms
       0.000000000000      0.000000000000      0.000000000000
       0.250000000000      0.250000000000      0.250000000000
 rms dE/dt=  0.0000E+00; max dE/dt=  0.0000E+00; dE/dt below (all hartree)
    1       0.000000000000      0.000000000000      0.000000000000
    2       0.000000000000      0.000000000000      0.000000000000
 cartesian coordinates (angstrom) at end:
    1      0.00000000000000     0.00000000000000     0.00000000000000
    2      1.34675599586155     1.34675599586155     1.34675599586155
 cartesian forces (hartree/bohr) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 h/b
 cartesian forces (eV/Angstrom) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 e/A
 length scales= 10.180000000000 10.180000000000 10.180000000000 bohr
              =  5.387023983446  5.387023983446  5.387023983446 angstroms
 prteigrs : about to open file tbase3_3o_DS1_EIG
 Fermi (or HOMO) energy (hartree) =   0.15340   Average Vxc (hartree)=  -0.34987
 Eigenvalues (hartree) for nkpt=   2  k points:
 kpt#   1, nband=  5, wtk=  0.75000, kpt= -0.2500  0.5000  0.0000 (reduced coord)
  -0.16182   -0.05574    0.04798    0.09886    0.23329
 prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state     : {dtset: 1, }
comment             : Components of total free energy in Hartree
kinetic             :  3.12772926558859E+00
hartree             :  5.47060783406794E-01
xc                  : -3.11674817182468E+00
Ewald energy        : -8.46648022654903E+00
psp_core            :  4.04636587753304E-01
local_psp           : -2.33102934151363E+00
non_local_psp       :  1.31609203889878E+00
total_energy        : -8.51873906423987E+00
total_energy_eV     : -2.31806678680208E+02
band_energy         : -5.22308669023624E-02
...
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -2.37540200E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -2.37540200E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -2.37540200E-05  sigma(2 1)=  0.00000000E+00
-Cartesian components of stress tensor (GPa)         [Pressure=  6.9887E-01 GPa]
- sigma(1 1)= -6.98867280E-01  sigma(3 2)=  0.00000000E+00
- sigma(2 2)= -6.98867280E-01  sigma(3 1)=  0.00000000E+00
- sigma(3 3)= -6.98867280E-01  sigma(2 1)=  0.00000000E+00
================================================================================
== DATASET  2 ==================================================================
-   mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 10, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 534, }
cutoff_energies: {ecut:  12.0, pawecutdg:  -1.0, }
electrons: {nelect:   8.00000000E+00, charge:   0.00000000E+00, occopt:   1.00000000E+00, tsmear:   1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
 mkfilename : getwfk/=0, take file _WFK from output of DATASET   1.
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  5.0900000  5.0900000  G(1)= -0.0982318  0.0982318  0.0982318
 R(2)=  5.0900000  0.0000000  5.0900000  G(2)=  0.0982318 -0.0982318  0.0982318
 R(3)=  5.0900000  5.0900000  0.0000000  G(3)=  0.0982318  0.0982318 -0.0982318
 Unit cell volume ucvol=  2.6374446E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  24  24  24
         ecut(hartree)=     12.000   => boxcut(ratio)=   2.13807
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tbase3_3o_DS1_WFK
_setup2: Arith. and geom. avg. npw (full set) are     523.500     523.486
================================================================================
--- !BeginCycle
iteration_state: {dtset: 2, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5250038208242    -8.525E+00 2.407E-04 2.238E-02
 ETOT  2  -8.5250179069655    -1.409E-05 4.114E-07 1.689E-04
 ETOT  3  -8.5250179731184    -6.615E-08 1.243E-07 1.658E-06
 ETOT  4  -8.5250179735121    -3.937E-10 7.991E-09 1.585E-08
 At SCF step    4, etot is converged : 
  for the second time, diff in etot=  3.937E-10 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -9.99218877E-06  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -9.99218877E-06  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -9.99218877E-06  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 2, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0900000,   5.0900000, ]
- [  5.0900000,   0.0000000,   5.0900000, ]
- [  5.0900000,   5.0900000,   0.0000000, ]
lattice_lengths: [   7.19835,    7.19835,    7.19835, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6374446E+02
convergence: {deltae: -3.937E-10, res2:  1.585E-08, residm:  7.991E-09, diffor: null, }
etotal    :  -8.52501797E+00
entropy   :   0.00000000E+00
fermie    :   1.69761303E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -9.99218877E-06,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -9.99218877E-06,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -9.99218877E-06, ]
pressure_GPa:   2.9398E-01
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.79928407
    2        2.00000          1.79928407
================================================================================
 ----iterations are completed or convergence reached----
 Mean square residual over all n,k,spin=   18.967E-11; max=  79.906E-10
 reduced coordinates (array xred) for    2 atoms
       0.000000000000      0.000000000000      0.000000000000
       0.250000000000      0.250000000000      0.250000000000
 rms dE/dt=  0.0000E+00; max dE/dt=  0.0000E+00; dE/dt below (all hartree)
    1       0.000000000000      0.000000000000      0.000000000000
    2       0.000000000000      0.000000000000      0.000000000000
 cartesian coordinates (angstrom) at end:
    1      0.00000000000000     0.00000000000000     0.00000000000000
    2      1.34675599586155     1.34675599586155     1.34675599586155
 cartesian forces (hartree/bohr) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 h/b
 cartesian forces (eV/Angstrom) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 e/A
 length scales= 10.180000000000 10.180000000000 10.180000000000 bohr
              =  5.387023983446  5.387023983446  5.387023983446 angstroms
 prteigrs : about to open file tbase3_3o_DS2_EIG
 Fermi (or HOMO) energy (hartree) =   0.16976   Average Vxc (hartree)=  -0.35036
 Eigenvalues (hartree) for nkpt=  10  k points:
 kpt#   1, nband=  5, wtk=  0.09375, kpt= -0.1250 -0.2500  0.0000 (reduced coord)
  -0.23730    0.06074    0.13097    0.13395    0.25767
 prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state     : {dtset: 2, }
comment             : Components of total free energy in Hartree
kinetic             :  3.10867040132890E+00
hartree             :  5.37475235680812E-01
xc                  : -3.11284585404000E+00
Ewald energy        : -8.46648022654903E+00
psp_core            :  4.04636587753304E-01
local_psp           : -2.31645317122800E+00
non_local_psp       :  1.31997905354187E+00
total_energy        : -8.52501797351215E+00
total_energy_eV     : -2.31977536490638E+02
band_energy         : -6.69071258831801E-02
...
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -9.99218877E-06  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -9.99218877E-06  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -9.99218877E-06  sigma(2 1)=  0.00000000E+00
-Cartesian components of stress tensor (GPa)         [Pressure=  2.9398E-01 GPa]
- sigma(1 1)= -2.93980294E-01  sigma(3 2)=  0.00000000E+00
- sigma(2 2)= -2.93980294E-01  sigma(3 1)=  0.00000000E+00
- sigma(3 3)= -2.93980294E-01  sigma(2 1)=  0.00000000E+00
================================================================================
== DATASET  3 ==================================================================
-   mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 3, }
dimensions: {natom: 2, nkpt: 28, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 534, }
cutoff_energies: {ecut:  12.0, pawecutdg:  -1.0, }
electrons: {nelect:   8.00000000E+00, charge:   0.00000000E+00, occopt:   1.00000000E+00, tsmear:   1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
 mkfilename : getwfk/=0, take file _WFK from output of DATASET   2.
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  5.0900000  5.0900000  G(1)= -0.0982318  0.0982318  0.0982318
 R(2)=  5.0900000  0.0000000  5.0900000  G(2)=  0.0982318 -0.0982318  0.0982318
 R(3)=  5.0900000  5.0900000  0.0000000  G(3)=  0.0982318  0.0982318 -0.0982318
 Unit cell volume ucvol=  2.6374446E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  24  24  24
         ecut(hartree)=     12.000   => boxcut(ratio)=   2.13807
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tbase3_3o_DS2_WFK
_setup2: Arith. and geom. avg. npw (full set) are     523.278     523.255
================================================================================
--- !BeginCycle
iteration_state: {dtset: 3, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5250712503232    -8.525E+00 1.212E-02 1.112E-01
 ETOT  2  -8.5251227653633    -5.152E-05 5.012E-04 1.488E-03
 ETOT  3  -8.5251232857512    -5.204E-07 6.880E-05 2.393E-05
 ETOT  4  -8.5251232907514    -5.000E-09 1.298E-05 4.000E-08
 At SCF step    4, etot is converged : 
  for the second time, diff in etot=  5.000E-09 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -1.01082066E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -1.01082066E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -1.01082066E-05  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 3, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0900000,   5.0900000, ]
- [  5.0900000,   0.0000000,   5.0900000, ]
- [  5.0900000,   5.0900000,   0.0000000, ]
lattice_lengths: [   7.19835,    7.19835,    7.19835, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6374446E+02
convergence: {deltae: -5.000E-09, res2:  4.000E-08, residm:  1.298E-05, diffor: null, }
etotal    :  -8.52512329E+00
entropy   :   0.00000000E+00
fermie    :   1.75179983E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.01082066E-05,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -1.01082066E-05,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -1.01082066E-05, ]
pressure_GPa:   2.9739E-01
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.79921245
    2        2.00000          1.79921245
================================================================================
 ----iterations are completed or convergence reached----
 Mean square residual over all n,k,spin=   94.769E-09; max=  12.985E-06
 reduced coordinates (array xred) for    2 atoms
       0.000000000000      0.000000000000      0.000000000000
       0.250000000000      0.250000000000      0.250000000000
 rms dE/dt=  0.0000E+00; max dE/dt=  0.0000E+00; dE/dt below (all hartree)
    1       0.000000000000      0.000000000000      0.000000000000
    2       0.000000000000      0.000000000000      0.000000000000
 cartesian coordinates (angstrom) at end:
    1      0.00000000000000     0.00000000000000     0.00000000000000
    2      1.34675599586155     1.34675599586155     1.34675599586155
 cartesian forces (hartree/bohr) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 h/b
 cartesian forces (eV/Angstrom) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 e/A
 length scales= 10.180000000000 10.180000000000 10.180000000000 bohr
              =  5.387023983446  5.387023983446  5.387023983446 angstroms
 prteigrs : about to open file tbase3_3o_DS3_EIG
 Fermi (or HOMO) energy (hartree) =   0.17518   Average Vxc (hartree)=  -0.35037
 Eigenvalues (hartree) for nkpt=  28  k points:
 kpt#   1, nband=  5, wtk=  0.02778, kpt= -0.0833 -0.1667  0.0000 (reduced coord)
  -0.25268    0.10894    0.15061    0.15798    0.26414
 prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state     : {dtset: 3, }
comment             : Components of total free energy in Hartree
kinetic             :  3.10815638117406E+00
hartree             :  5.37169037859319E-01
xc                  : -3.11272394462013E+00
Ewald energy        : -8.46648022654903E+00
psp_core            :  4.04636587753304E-01
local_psp           : -2.31605415901199E+00
non_local_psp       :  1.32017303264305E+00
total_energy        : -8.52512329075142E+00
total_energy_eV     : -2.31980402318463E+02
band_energy         : -6.72934670968703E-02
...
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -1.01082066E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -1.01082066E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -1.01082066E-05  sigma(2 1)=  0.00000000E+00
-Cartesian components of stress tensor (GPa)         [Pressure=  2.9739E-01 GPa]
- sigma(1 1)= -2.97393654E-01  sigma(3 2)=  0.00000000E+00
- sigma(2 2)= -2.97393654E-01  sigma(3 1)=  0.00000000E+00
- sigma(3 3)= -2.97393654E-01  sigma(2 1)=  0.00000000E+00
================================================================================
== DATASET  4 ==================================================================
-   mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 4, }
dimensions: {natom: 2, nkpt: 60, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 534, }
cutoff_energies: {ecut:  12.0, pawecutdg:  -1.0, }
electrons: {nelect:   8.00000000E+00, charge:   0.00000000E+00, occopt:   1.00000000E+00, tsmear:   1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
 mkfilename : getwfk/=0, take file _WFK from output of DATASET   3.
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  5.0900000  5.0900000  G(1)= -0.0982318  0.0982318  0.0982318
 R(2)=  5.0900000  0.0000000  5.0900000  G(2)=  0.0982318 -0.0982318  0.0982318
 R(3)=  5.0900000  5.0900000  0.0000000  G(3)=  0.0982318  0.0982318 -0.0982318
 Unit cell volume ucvol=  2.6374446E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  24  24  24
         ecut(hartree)=     12.000   => boxcut(ratio)=   2.13807
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tbase3_3o_DS3_WFK
_setup2: Arith. and geom. avg. npw (full set) are     523.527     523.512
================================================================================
--- !BeginCycle
iteration_state: {dtset: 4, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5251267563626    -8.525E+00 1.096E-03 3.327E-05
 ETOT  2  -8.5251270558111    -2.994E-07 7.803E-05 3.114E-07
 ETOT  3  -8.5251270559429    -1.318E-10 2.743E-05 1.277E-09
 At SCF step    3, etot is converged : 
  for the second time, diff in etot=  1.318E-10 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -1.01577926E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -1.01577926E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -1.01577926E-05  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 4, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0900000,   5.0900000, ]
- [  5.0900000,   0.0000000,   5.0900000, ]
- [  5.0900000,   5.0900000,   0.0000000, ]
lattice_lengths: [   7.19835,    7.19835,    7.19835, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6374446E+02
convergence: {deltae: -1.318E-10, res2:  1.277E-09, residm:  2.743E-05, diffor: null, }
etotal    :  -8.52512706E+00
entropy   :   0.00000000E+00
fermie    :   1.77411816E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.01577926E-05,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -1.01577926E-05,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -1.01577926E-05, ]
pressure_GPa:   2.9885E-01
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.79921069
    2        2.00000          1.79921069
================================================================================
 ----iterations are completed or convergence reached----
 Mean square residual over all n,k,spin=   11.558E-08; max=  27.428E-06
 reduced coordinates (array xred) for    2 atoms
       0.000000000000      0.000000000000      0.000000000000
       0.250000000000      0.250000000000      0.250000000000
 rms dE/dt=  0.0000E+00; max dE/dt=  0.0000E+00; dE/dt below (all hartree)
    1       0.000000000000      0.000000000000      0.000000000000
    2       0.000000000000      0.000000000000      0.000000000000
 cartesian coordinates (angstrom) at end:
    1      0.00000000000000     0.00000000000000     0.00000000000000
    2      1.34675599586155     1.34675599586155     1.34675599586155
 cartesian forces (hartree/bohr) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 h/b
 cartesian forces (eV/Angstrom) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 e/A
 length scales= 10.180000000000 10.180000000000 10.180000000000 bohr
              =  5.387023983446  5.387023983446  5.387023983446 angstroms
 prteigrs : about to open file tbase3_3o_DS4_EIG
 Fermi (or HOMO) energy (hartree) =   0.17741   Average Vxc (hartree)=  -0.35037
 Eigenvalues (hartree) for nkpt=  60  k points:
 kpt#   1, nband=  5, wtk=  0.01172, kpt= -0.0625 -0.1250  0.0000 (reduced coord)
  -0.25811    0.13302    0.16094    0.16743    0.26764
 prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state     : {dtset: 4, }
comment             : Components of total free energy in Hartree
kinetic             :  3.10813515384875E+00
hartree             :  5.37155670622526E-01
xc                  : -3.11271880756109E+00
Ewald energy        : -8.46648022654903E+00
psp_core            :  4.04636587753304E-01
local_psp           : -2.31604312698080E+00
non_local_psp       :  1.32018769292340E+00
total_energy        : -8.52512705594294E+00
total_energy_eV     : -2.31980504774535E+02
band_energy         : -6.72920267535825E-02
...
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -1.01577926E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -1.01577926E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -1.01577926E-05  sigma(2 1)=  0.00000000E+00
-Cartesian components of stress tensor (GPa)         [Pressure=  2.9885E-01 GPa]
- sigma(1 1)= -2.98852525E-01  sigma(3 2)=  0.00000000E+00
- sigma(2 2)= -2.98852525E-01  sigma(3 1)=  0.00000000E+00
- sigma(3 3)= -2.98852525E-01  sigma(2 1)=  0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
 -outvars: echo values of variables after computation  --------
            acell      1.0180000000E+01  1.0180000000E+01  1.0180000000E+01 Bohr
              amu      2.80855000E+01
           diemac      1.20000000E+01
             ecut      1.20000000E+01 Hartree
           etotal1    -8.5187390642E+00
           etotal2    -8.5250179735E+00
           etotal3    -8.5251232908E+00
           etotal4    -8.5251270559E+00
            fcart1    -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
                      -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
            fcart2    -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
                      -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
            fcart3    -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
                      -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
            fcart4    -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
                      -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-          fftalg         312
           getwfk          -1
              ixc       -1012
           jdtset        1    2    3    4
              kpt1    -2.50000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  0.00000000E+00  0.00000000E+00
              kpt2    -1.25000000E-01 -2.50000000E-01  0.00000000E+00
                      -1.25000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01 -3.75000000E-01  0.00000000E+00
                      -1.25000000E-01 -3.75000000E-01  1.25000000E-01
                      -1.25000000E-01  2.50000000E-01  0.00000000E+00
                      -2.50000000E-01  3.75000000E-01  0.00000000E+00
                      -3.75000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  5.00000000E-01  1.25000000E-01
                      -1.25000000E-01  0.00000000E+00  0.00000000E+00
                      -3.75000000E-01  0.00000000E+00  0.00000000E+00
              kpt3    -8.33333333E-02 -1.66666667E-01  0.00000000E+00
                      -8.33333333E-02 -3.33333333E-01  0.00000000E+00
                      -1.66666667E-01 -2.50000000E-01  0.00000000E+00
                      -8.33333333E-02 -2.50000000E-01  8.33333333E-02
                      -8.33333333E-02  5.00000000E-01  0.00000000E+00
                      -1.66666667E-01 -4.16666667E-01  0.00000000E+00
                      -8.33333333E-02 -4.16666667E-01  8.33333333E-02
                      -2.50000000E-01 -3.33333333E-01  0.00000000E+00
                      -1.66666667E-01 -3.33333333E-01  8.33333333E-02
                      -8.33333333E-02 -3.33333333E-01  1.66666667E-01
                      -8.33333333E-02  3.33333333E-01  0.00000000E+00
                      -1.66666667E-01  4.16666667E-01  0.00000000E+00
                      -2.50000000E-01  5.00000000E-01  0.00000000E+00
                      -1.66666667E-01  5.00000000E-01  8.33333333E-02
                      -3.33333333E-01 -4.16666667E-01  0.00000000E+00
                      -2.50000000E-01 -4.16666667E-01  8.33333333E-02
                      -1.66666667E-01 -4.16666667E-01  1.66666667E-01
                      -8.33333333E-02 -4.16666667E-01  2.50000000E-01
                      -8.33333333E-02  1.66666667E-01  0.00000000E+00
                      -1.66666667E-01  2.50000000E-01  0.00000000E+00
                      -2.50000000E-01  3.33333333E-01  0.00000000E+00
                      -3.33333333E-01  4.16666667E-01  0.00000000E+00
                      -4.16666667E-01  5.00000000E-01  0.00000000E+00
                      -3.33333333E-01  5.00000000E-01  8.33333333E-02
                      -2.50000000E-01  5.00000000E-01  1.66666667E-01
                      -8.33333333E-02  0.00000000E+00  0.00000000E+00
                      -2.50000000E-01  0.00000000E+00  0.00000000E+00
                      -4.16666667E-01  0.00000000E+00  0.00000000E+00
              kpt4    -6.25000000E-02 -1.25000000E-01  0.00000000E+00
                      -6.25000000E-02 -2.50000000E-01  0.00000000E+00
                      -1.25000000E-01 -1.87500000E-01  0.00000000E+00
                      -6.25000000E-02 -1.87500000E-01  6.25000000E-02
                      -6.25000000E-02 -3.75000000E-01  0.00000000E+00
                      -1.25000000E-01 -3.12500000E-01  0.00000000E+00
                      -6.25000000E-02 -3.12500000E-01  6.25000000E-02
                      -1.87500000E-01 -2.50000000E-01  0.00000000E+00
                      -1.25000000E-01 -2.50000000E-01  6.25000000E-02
                      -6.25000000E-02 -2.50000000E-01  1.25000000E-01
                      -6.25000000E-02  5.00000000E-01  0.00000000E+00
                      -1.25000000E-01 -4.37500000E-01  0.00000000E+00
                      -6.25000000E-02 -4.37500000E-01  6.25000000E-02
                      -1.87500000E-01 -3.75000000E-01  0.00000000E+00
                      -1.25000000E-01 -3.75000000E-01  6.25000000E-02
                      -6.25000000E-02 -3.75000000E-01  1.25000000E-01
                      -2.50000000E-01 -3.12500000E-01  0.00000000E+00
                      -1.87500000E-01 -3.12500000E-01  6.25000000E-02
                      -1.25000000E-01 -3.12500000E-01  1.25000000E-01
                      -6.25000000E-02 -3.12500000E-01  1.87500000E-01
                      -6.25000000E-02  3.75000000E-01  0.00000000E+00
                      -1.25000000E-01  4.37500000E-01  0.00000000E+00
                      -1.87500000E-01  5.00000000E-01  0.00000000E+00
                      -1.25000000E-01  5.00000000E-01  6.25000000E-02
                      -2.50000000E-01 -4.37500000E-01  0.00000000E+00
                      -1.87500000E-01 -4.37500000E-01  6.25000000E-02
                      -1.25000000E-01 -4.37500000E-01  1.25000000E-01
                      -6.25000000E-02 -4.37500000E-01  1.87500000E-01
                      -3.12500000E-01 -3.75000000E-01  0.00000000E+00
                      -2.50000000E-01 -3.75000000E-01  6.25000000E-02
                      -1.87500000E-01 -3.75000000E-01  1.25000000E-01
                      -1.25000000E-01 -3.75000000E-01  1.87500000E-01
                      -6.25000000E-02 -3.75000000E-01  2.50000000E-01
                      -6.25000000E-02  2.50000000E-01  0.00000000E+00
                      -1.25000000E-01  3.12500000E-01  0.00000000E+00
                      -1.87500000E-01  3.75000000E-01  0.00000000E+00
                      -2.50000000E-01  4.37500000E-01  0.00000000E+00
                      -3.12500000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  5.00000000E-01  6.25000000E-02
                      -1.87500000E-01  5.00000000E-01  1.25000000E-01
                      -3.75000000E-01 -4.37500000E-01  0.00000000E+00
                      -3.12500000E-01 -4.37500000E-01  6.25000000E-02
                      -2.50000000E-01 -4.37500000E-01  1.25000000E-01
                      -1.87500000E-01 -4.37500000E-01  1.87500000E-01
                      -1.25000000E-01 -4.37500000E-01  2.50000000E-01
                      -6.25000000E-02 -4.37500000E-01  3.12500000E-01
                      -6.25000000E-02  1.25000000E-01  0.00000000E+00
                      -1.25000000E-01  1.87500000E-01  0.00000000E+00
                      -1.87500000E-01  2.50000000E-01  0.00000000E+00
                      -2.50000000E-01  3.12500000E-01  0.00000000E+00
                       outvar_i_n : Printing only first  50 k-points.
         kptrlatt1       2   -2    2     -2    2    2     -2   -2    2
         kptrlatt2       4   -4    4     -4    4    4     -4   -4    4
         kptrlatt3       6   -6    6     -6    6    6     -6   -6    6
         kptrlatt4       8   -8    8     -8    8    8     -8   -8    8
          kptrlen1     2.03600000E+01
          kptrlen2     4.07200000E+01
          kptrlen3     6.10800000E+01
          kptrlen4     8.14400000E+01
P           mkmem1          2
P           mkmem2         10
P           mkmem3         28
P           mkmem4         60
            natom           2
            nband1          5
            nband2          5
            nband3          5
            nband4          5
           ndtset           4
            ngfft          24      24      24
             nkpt1          2
             nkpt2         10
             nkpt3         28
             nkpt4         60
            nstep          10
             nsym          48
           ntypat           1
              occ1     2.000000  2.000000  2.000000  2.000000  0.000000
              occ2     2.000000  2.000000  2.000000  2.000000  0.000000
              occ3     2.000000  2.000000  2.000000  2.000000  0.000000
              occ4     2.000000  2.000000  2.000000  2.000000  0.000000
            rprim      0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
                       5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
                       5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
           shiftk      5.00000000E-01  5.00000000E-01  5.00000000E-01
          spgroup         227
           strten1    -2.3754020033E-05 -2.3754020033E-05 -2.3754020033E-05
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           strten2    -9.9921887693E-06 -9.9921887693E-06 -9.9921887693E-06
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           strten3    -1.0108206562E-05 -1.0108206562E-05 -1.0108206562E-05
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           strten4    -1.0157792566E-05 -1.0157792566E-05 -1.0157792566E-05
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           symrel      1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
                       0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0
                      -1  0  0  -1  0  1  -1  1  0       1  0  0   1  0 -1   1 -1  0
                       0  1 -1   1  0 -1   0  0 -1       0 -1  1  -1  0  1   0  0  1
                      -1  0  0  -1  1  0  -1  0  1       1  0  0   1 -1  0   1  0 -1
                       0 -1  1   1 -1  0   0 -1  0       0  1 -1  -1  1  0   0  1  0
                       1  0  0   0  0  1   0  1  0      -1  0  0   0  0 -1   0 -1  0
                       0  1 -1   0  0 -1   1  0 -1       0 -1  1   0  0  1  -1  0  1
                      -1  0  1  -1  1  0  -1  0  0       1  0 -1   1 -1  0   1  0  0
                       0 -1  0   1 -1  0   0 -1  1       0  1  0  -1  1  0   0  1 -1
                       1  0 -1   0  0 -1   0  1 -1      -1  0  1   0  0  1   0 -1  1
                       0  1  0   0  0  1   1  0  0       0 -1  0   0  0 -1  -1  0  0
                       1  0 -1   0  1 -1   0  0 -1      -1  0  1   0 -1  1   0  0  1
                       0 -1  0   0 -1  1   1 -1  0       0  1  0   0  1 -1  -1  1  0
                      -1  0  1  -1  0  0  -1  1  0       1  0 -1   1  0  0   1 -1  0
                       0  1  0   1  0  0   0  0  1       0 -1  0  -1  0  0   0  0 -1
                       0  0 -1   0  1 -1   1  0 -1       0  0  1   0 -1  1  -1  0  1
                       1 -1  0   0 -1  1   0 -1  0      -1  1  0   0  1 -1   0  1  0
                       0  0  1   1  0  0   0  1  0       0  0 -1  -1  0  0   0 -1  0
                      -1  1  0  -1  0  0  -1  0  1       1 -1  0   1  0  0   1  0 -1
                       0  0  1   0  1  0   1  0  0       0  0 -1   0 -1  0  -1  0  0
                       1 -1  0   0 -1  0   0 -1  1      -1  1  0   0  1  0   0  1 -1
                       0  0 -1   1  0 -1   0  1 -1       0  0  1  -1  0  1   0 -1  1
                      -1  1  0  -1  0  1  -1  0  0       1 -1  0   1  0 -1   1  0  0
            tnons      0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
           toldfe      1.00000000E-06 Hartree
            typat      1  1
              wtk1       0.75000    0.25000
              wtk2       0.09375    0.09375    0.09375    0.18750    0.09375    0.09375
                         0.09375    0.18750    0.03125    0.03125
              wtk3       0.02778    0.02778    0.02778    0.05556    0.02778    0.02778
                         0.05556    0.02778    0.05556    0.05556    0.02778    0.02778
                         0.02778    0.05556    0.02778    0.05556    0.05556    0.05556
                         0.02778    0.02778    0.02778    0.02778    0.02778    0.05556
                         0.05556    0.00926    0.00926    0.00926
              wtk4       0.01172    0.01172    0.01172    0.02344    0.01172    0.01172
                         0.02344    0.01172    0.02344    0.02344    0.01172    0.01172
                         0.02344    0.01172    0.02344    0.02344    0.01172    0.02344
                         0.02344    0.02344    0.01172    0.01172    0.01172    0.02344
                         0.01172    0.02344    0.02344    0.02344    0.01172    0.02344
                         0.02344    0.02344    0.02344    0.01172    0.01172    0.01172
                         0.01172    0.01172    0.02344    0.02344    0.01172    0.02344
                         0.02344    0.02344    0.02344    0.02344    0.01172    0.01172
                         0.01172    0.01172
                       outvars : Printing only first  50 k-points.
           xangst      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.3467559959E+00  1.3467559959E+00  1.3467559959E+00
            xcart      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5450000000E+00  2.5450000000E+00  2.5450000000E+00
             xred      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
            znucl       14.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
 Suggested references for the acknowledgment of ABINIT usage.
 The users of ABINIT have little formal obligations with respect to the ABINIT group
 (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
 However, it is common practice in the scientific literature,
 to acknowledge the efforts of people that have made the research possible.
 In this spirit, please find below suggested citations of work written by ABINIT developers,
 corresponding to implementations inside of ABINIT that you have used in the present run.
 Note also that it will be of great value to readers of publications presenting these results,
 to read papers enabling them to understand the theoretical formalism and details
 of the ABINIT implementation.
 For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Libxc: A library of exchange and correlation functionals for density functional theory.
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
- Comment: to be cited when LibXC is used (negative value of ixc)
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm. 
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] Optimized norm-conserving Vanderbilt pseudopotentials.
- D.R. Hamann, Phys. Rev. B 88, 085117 (2013).
- Comment: Some pseudopotential generated using the ONCVPSP code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2013
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin, 
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys 
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm. 
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc.   0 individual time (sec): cpu=          8.4  wall=          8.5
================================================================================
 Calculation completed.
.Delivered   4 WARNINGs and  13 COMMENTs to log file.
+Overall time at end (sec) : cpu=          8.4  wall=          8.5
In this output file, you should have a look at the echo of input variables. As you know, these are preprocessed, and, in particular, ngkpt and shiftk are used to generate the list of k-points (kpt) and their weights (wtk). You should read the information about kpt and wtk.
From the output file, here is the evolution of total energy for the different k-point grids:
etotal1    -8.5187390642E+00
etotal2    -8.5250179735E+00
etotal3    -8.5251232908E+00
etotal4    -8.5251270559E+00
The difference between dataset 3 and dataset 4 is rather small. Even the dataset 2 gives an accuracy of about 0.0001 Ha. So, our converged value for the total energy, at fixed acell, fixed ecut, is -8.8251 Ha.
Determination of the lattice parameters¶
The input variable optcell governs the automatic optimisation of cell shape and volume. For the automatic optimisation of cell volume in this cubic crystal, use:
optcell 1
ionmov 2
ntime 10
dilatmx 1.05
ecutsm 0.5
You should read the indications about optcell, dilatmx and ecutsm. In particular, while optcell is adequate for cubic crystals, for the majority of materials, the optimal geometry must include deformations of the cell shape, not simply global rescaling, so the most usual value of optcell to be used is 2. Do not test all the k-point grids, only those with nkpt 2 and 10.
The input file $ABI_TESTS/tutorial/Input/tbase3_4.abi is an example,
# Crystalline silicon : computation of the optimal lattice parameter # Convergence with respect to the number of k points. ndtset 2 #Optimization of the lattice parameters optcell 1 ionmov 2 ntime 10 dilatmx 1.05 ecutsm 0.5 #Definition of the unit cell acell 3*10.18 # This is equivalent to 10.18 10.18 10.18 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 #Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. pp_dirpath "$ABI_PSPDIR" # This is the path to the directory were # pseudopotentials for tests are stored pseudos "Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8" # Name and location of the pseudopotential #Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/4 1/4 1/4 # Triplet giving the REDUCED coordinate of atom 2. #Definition of the planewave basis set ecut 12.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the k-point grid kptopt 1 # Option for the automatic generation of k points, taking # into account the symmetry nshiftk 4 shiftk 0.5 0.5 0.5 # These shifts will be the same for all grids 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 ngkpt1 2 2 2 # Definition of the different grids ngkpt2 4 4 4 #ngkpt3 6 6 6 # Not used #ngkpt4 8 8 8 # Not used getwfk -1 # This is to speed up the calculation, by restarting # from previous wavefunctions, transferred from the old # to the new k-points. #Definition of the SCF procedure nstep 10 # Maximal number of SCF cycles toldfe 1.0d-6 # Will stop when, twice in a row, the difference # between two consecutive evaluations of total energy # differ by less than toldfe (in Hartree) # This value is way too large for most realistic studies of materials diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. ############################################################## # This section is used only for regression testing of ABINIT # ############################################################## #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% tbase3_4.abo, tolnlines= 0, tolabs= 6.200e-07, tolrel= 1.100e-03, fld_options=-medium #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = #%% Crystalline silicon : computation of the optimal lattice parameter #%% Convergence with respect to the number of k points. #%%<END TEST_INFO>
while $ABI_TESTS/tutorial/Refs/tbase3_4.abo is a reference output file.
.Version 9.3.3 of ABINIT 
.(MPI version, prepared for a x86_64_linux_gnu9.3 computer) 
.Copyright (C) 1998-2022 ABINIT group . 
 ABINIT comes with ABSOLUTELY NO WARRANTY.
 It is free software, and you are welcome to redistribute it
 under certain conditions (GNU General Public License,
 see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
 ABINIT is a project of the Universite Catholique de Louvain,
 Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
 Please read https://docs.abinit.org/theory/acknowledgments for suggested
 acknowledgments of the ABINIT effort.
 For more information, see https://www.abinit.org .
.Starting date : Sat  2 Jan 2021.
- ( at 21h30 )
- input  file    -> /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/cote_beauty/tests/TestBot_MPI1/tutorial_tbase3_4/tbase3_4.abi
- output file    -> tbase3_4.abo
- root for input  files -> tbase3_4i
- root for output files -> tbase3_4o
 DATASET    1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
 Values of the parameters that define the memory need for DATASET  1.
     intxc =       0    ionmov =       2      iscf =       7    lmnmax =       6
     lnmax =       6     mgfft =      24  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      48    n1xccc =    2501    ntypat =       1
    occopt =       1   xclevel =       1
-    mband =           5        mffmem =           1         mkmem =           2
       mpw =         608          nfft =       13824          nkpt =           2
================================================================================
P This job should need less than                       4.817 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.095 Mbytes ; DEN or POT disk file :      0.107 Mbytes.
================================================================================
 DATASET    2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
 Values of the parameters that define the memory need for DATASET  2.
     intxc =       0    ionmov =       2      iscf =       7    lmnmax =       6
     lnmax =       6     mgfft =      24  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      48    n1xccc =    2501    ntypat =       1
    occopt =       1   xclevel =       1
-    mband =           5        mffmem =           1         mkmem =          10
       mpw =         611          nfft =       13824          nkpt =          10
================================================================================
P This job should need less than                       5.254 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.468 Mbytes ; DEN or POT disk file :      0.107 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values                                      
-   iomode0 =  0 , fftalg0 =312 , wfoptalg0 =  0
-
- outvars: echo of global parameters not present in the input file              
-  max_nthreads =    0
-
 -outvars: echo values of preprocessed input variables --------
            acell      1.0180000000E+01  1.0180000000E+01  1.0180000000E+01 Bohr
              amu      2.80855000E+01
           diemac      1.20000000E+01
          dilatmx      1.05000000E+00
             ecut      1.20000000E+01 Hartree
           ecutsm      5.00000000E-01 Hartree
-          fftalg         312
           getwfk          -1
           ionmov           2
              ixc       -1012
           jdtset        1    2
              kpt1    -2.50000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  0.00000000E+00  0.00000000E+00
              kpt2    -1.25000000E-01 -2.50000000E-01  0.00000000E+00
                      -1.25000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01 -3.75000000E-01  0.00000000E+00
                      -1.25000000E-01 -3.75000000E-01  1.25000000E-01
                      -1.25000000E-01  2.50000000E-01  0.00000000E+00
                      -2.50000000E-01  3.75000000E-01  0.00000000E+00
                      -3.75000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  5.00000000E-01  1.25000000E-01
                      -1.25000000E-01  0.00000000E+00  0.00000000E+00
                      -3.75000000E-01  0.00000000E+00  0.00000000E+00
         kptrlatt1       2   -2    2     -2    2    2     -2   -2    2
         kptrlatt2       4   -4    4     -4    4    4     -4   -4    4
          kptrlen1     2.03600000E+01
          kptrlen2     4.07200000E+01
P           mkmem1          2
P           mkmem2         10
            natom           2
            nband1          5
            nband2          5
           ndtset           2
            ngfft          24      24      24
             nkpt1          2
             nkpt2         10
            nstep          10
             nsym          48
            ntime          10
           ntypat           1
              occ1     2.000000  2.000000  2.000000  2.000000  0.000000
              occ2     2.000000  2.000000  2.000000  2.000000  0.000000
          optcell           1
            rprim      0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
                       5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
                       5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
           shiftk      5.00000000E-01  5.00000000E-01  5.00000000E-01
          spgroup         227
           symrel      1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
                       0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0
                      -1  0  0  -1  0  1  -1  1  0       1  0  0   1  0 -1   1 -1  0
                       0  1 -1   1  0 -1   0  0 -1       0 -1  1  -1  0  1   0  0  1
                      -1  0  0  -1  1  0  -1  0  1       1  0  0   1 -1  0   1  0 -1
                       0 -1  1   1 -1  0   0 -1  0       0  1 -1  -1  1  0   0  1  0
                       1  0  0   0  0  1   0  1  0      -1  0  0   0  0 -1   0 -1  0
                       0  1 -1   0  0 -1   1  0 -1       0 -1  1   0  0  1  -1  0  1
                      -1  0  1  -1  1  0  -1  0  0       1  0 -1   1 -1  0   1  0  0
                       0 -1  0   1 -1  0   0 -1  1       0  1  0  -1  1  0   0  1 -1
                       1  0 -1   0  0 -1   0  1 -1      -1  0  1   0  0  1   0 -1  1
                       0  1  0   0  0  1   1  0  0       0 -1  0   0  0 -1  -1  0  0
                       1  0 -1   0  1 -1   0  0 -1      -1  0  1   0 -1  1   0  0  1
                       0 -1  0   0 -1  1   1 -1  0       0  1  0   0  1 -1  -1  1  0
                      -1  0  1  -1  0  0  -1  1  0       1  0 -1   1  0  0   1 -1  0
                       0  1  0   1  0  0   0  0  1       0 -1  0  -1  0  0   0  0 -1
                       0  0 -1   0  1 -1   1  0 -1       0  0  1   0 -1  1  -1  0  1
                       1 -1  0   0 -1  1   0 -1  0      -1  1  0   0  1 -1   0  1  0
                       0  0  1   1  0  0   0  1  0       0  0 -1  -1  0  0   0 -1  0
                      -1  1  0  -1  0  0  -1  0  1       1 -1  0   1  0  0   1  0 -1
                       0  0  1   0  1  0   1  0  0       0  0 -1   0 -1  0  -1  0  0
                       1 -1  0   0 -1  0   0 -1  1      -1  1  0   0  1  0   0  1 -1
                       0  0 -1   1  0 -1   0  1 -1       0  0  1  -1  0  1   0 -1  1
                      -1  1  0  -1  0  1  -1  0  0       1 -1  0   1  0 -1   1  0  0
            tnons      0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
           toldfe      1.00000000E-06 Hartree
            typat      1  1
              wtk1       0.75000    0.25000
              wtk2       0.09375    0.09375    0.09375    0.18750    0.09375    0.09375
                         0.09375    0.18750    0.03125    0.03125
           xangst      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.3467559959E+00  1.3467559959E+00  1.3467559959E+00
            xcart      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5450000000E+00  2.5450000000E+00  2.5450000000E+00
             xred      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
            znucl       14.00000
================================================================================
 chkinp: Checking input parameters for consistency, jdtset=   1.
 chkinp: Checking input parameters for consistency, jdtset=   2.
================================================================================
== DATASET  1 ==================================================================
-   mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 2, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 608, }
cutoff_energies: {ecut:  12.0, pawecutdg:  -1.0, }
electrons: {nelect:   8.00000000E+00, charge:   0.00000000E+00, occopt:   1.00000000E+00, tsmear:   1.00000000E-02, }
meta: {optdriver: 0, ionmov: 2, optcell: 1, iscf: 7, paral_kgb: 0, }
...
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  5.0900000  5.0900000  G(1)= -0.0982318  0.0982318  0.0982318
 R(2)=  5.0900000  0.0000000  5.0900000  G(2)=  0.0982318 -0.0982318  0.0982318
 R(3)=  5.0900000  5.0900000  0.0000000  G(3)=  0.0982318  0.0982318 -0.0982318
 Unit cell volume ucvol=  2.6374446E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  24  24  24
         ecut(hartree)=     13.230   => boxcut(ratio)=   2.03626
--- Pseudopotential description ------------------------------------------------
- pspini: atom type   1  psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/cote_beauty/tests/Psps_for_tests/Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8
- pspatm: opening atomic psp file    /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/cote_beauty/tests/Psps_for_tests/Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8
- Si    ONCVPSP-3.3.0  r_core=   1.60303   1.72197   1.91712
- 14.00000   4.00000    171102                znucl, zion, pspdat
    8   -1012    2    4       600   0.00000   pspcod,pspxc,lmax,lloc,mmax,r2well
    5.99000000000000    4.00000000000000    0.00000000000000   rchrg,fchrg,qchrg
     nproj     2     2     2
     extension_switch     1
  pspatm : epsatm=    6.67004110
         --- l  ekb(1:nproj) -->
             0    5.565958    0.856966
             1    2.726111    0.629828
             2   -2.124804   -0.444604
 pspatm: atomic psp has been read  and splines computed
   1.06720658E+02                                ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are     606.250     606.242
================================================================================
=== [ionmov= 2] Broyden-Fletcher-Goldfard-Shanno method (forces)            
================================================================================
--- Iteration: ( 1/10) Internal Cycle: (1/1)
--------------------------------------------------------------------------------
---SELF-CONSISTENT-FIELD CONVERGENCE--------------------------------------------
--- !BeginCycle
iteration_state: {dtset: 1, itime: 1, icycle: 1, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5136705828667    -8.514E+00 4.325E-03 6.666E+00
 ETOT  2  -8.5186597704683    -4.989E-03 4.648E-06 1.367E-01
 ETOT  3  -8.5187048439456    -4.507E-05 1.303E-06 1.934E-03
 ETOT  4  -8.5187051879018    -3.440E-07 6.765E-08 8.550E-06
 ETOT  5  -8.5187051898762    -1.974E-09 8.391E-10 4.213E-08
 At SCF step    5, etot is converged : 
  for the second time, diff in etot=  1.974E-09 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -2.86870242E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -2.86870242E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -2.86870242E-05  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, itime: 1, icycle: 1, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0900000,   5.0900000, ]
- [  5.0900000,   0.0000000,   5.0900000, ]
- [  5.0900000,   5.0900000,   0.0000000, ]
lattice_lengths: [   7.19835,    7.19835,    7.19835, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6374446E+02
convergence: {deltae: -1.974E-09, res2:  4.213E-08, residm:  8.391E-10, diffor: null, }
etotal    :  -8.51870519E+00
entropy   :   0.00000000E+00
fermie    :   1.53403603E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -2.86870242E-05,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -2.86870242E-05,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -2.86870242E-05, ]
pressure_GPa:   8.4400E-01
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.80253097
    2        2.00000          1.80253097
---OUTPUT-----------------------------------------------------------------------
 Cartesian coordinates (xcart) [bohr]
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.54500000000000E+00  2.54500000000000E+00  2.54500000000000E+00
 Reduced coordinates (xred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.50000000000000E-01  2.50000000000000E-01  2.50000000000000E-01
 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms)
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 Gradient of E wrt nuclear positions in reduced coordinates (gred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
 Scale of Primitive Cell (acell) [bohr]
  1.01800000000000E+01  1.01800000000000E+01  1.01800000000000E+01
 Real space primitive translations (rprimd) [bohr]
  0.00000000000000E+00  5.09000000000000E+00  5.09000000000000E+00
  5.09000000000000E+00  0.00000000000000E+00  5.09000000000000E+00
  5.09000000000000E+00  5.09000000000000E+00  0.00000000000000E+00
 Unitary Cell Volume (ucvol) [Bohr^3]=  2.63744458000000E+02
 Angles (23,13,12)= [degrees]
  6.00000000000000E+01  6.00000000000000E+01  6.00000000000000E+01
 Lengths [Bohr]
  7.19834703247905E+00  7.19834703247905E+00  7.19834703247905E+00
 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3]
 -2.86870241743289E-05  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00 -2.86870241743285E-05  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00 -2.86870241743289E-05
 Total energy (etotal) [Ha]= -8.51870518987621E+00
--- Iteration: ( 2/10) Internal Cycle: (1/1)
--------------------------------------------------------------------------------
---SELF-CONSISTENT-FIELD CONVERGENCE--------------------------------------------
--- !BeginCycle
iteration_state: {dtset: 1, itime: 2, icycle: 1, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5187208918409    -8.519E+00 5.576E-11 1.948E-03
 ETOT  2  -8.5187216509313    -7.591E-07 1.857E-11 6.491E-05
 ETOT  3  -8.5187216679463    -1.701E-08 3.104E-10 8.425E-07
 At SCF step    3, etot is converged : 
  for the second time, diff in etot=  1.701E-08 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -1.96464068E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -1.96464068E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -1.96464068E-05  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, itime: 2, icycle: 1, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0943805,   5.0943805, ]
- [  5.0943805,   0.0000000,   5.0943805, ]
- [  5.0943805,   5.0943805,   0.0000000, ]
lattice_lengths: [   7.20454,    7.20454,    7.20454, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6442599E+02
convergence: {deltae: -1.701E-08, res2:  8.425E-07, residm:  3.104E-10, diffor: null, }
etotal    :  -8.51872167E+00
entropy   :   0.00000000E+00
fermie    :   1.52585519E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.96464068E-05,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -1.96464068E-05,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -1.96464068E-05, ]
pressure_GPa:   5.7802E-01
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.80472093
    2        2.00000          1.80472093
---OUTPUT-----------------------------------------------------------------------
 Cartesian coordinates (xcart) [bohr]
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.54719025429571E+00  2.54719025429571E+00  2.54719025429571E+00
 Reduced coordinates (xred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.50000000000000E-01  2.50000000000000E-01  2.50000000000000E-01
 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms)
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 Gradient of E wrt nuclear positions in reduced coordinates (gred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
 Scale of Primitive Cell (acell) [bohr]
  1.01887610171828E+01  1.01887610171828E+01  1.01887610171828E+01
 Real space primitive translations (rprimd) [bohr]
  0.00000000000000E+00  5.09438050859142E+00  5.09438050859142E+00
  5.09438050859142E+00  0.00000000000000E+00  5.09438050859142E+00
  5.09438050859142E+00  5.09438050859142E+00  0.00000000000000E+00
 Unitary Cell Volume (ucvol) [Bohr^3]=  2.64425988123586E+02
 Angles (23,13,12)= [degrees]
  6.00000000000000E+01  6.00000000000000E+01  6.00000000000000E+01
 Lengths [Bohr]
  7.20454200713913E+00  7.20454200713913E+00  7.20454200713913E+00
 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3]
 -1.96464068263648E-05  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00 -1.96464068263644E-05  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00 -1.96464068263646E-05
 Total energy (etotal) [Ha]= -8.51872166794625E+00
 Difference of energy with previous step (new-old):
           Absolute (Ha)=-1.64781E-05
           Relative     =-1.93434E-06
--- Iteration: ( 3/10) Internal Cycle: (1/1)
--------------------------------------------------------------------------------
---SELF-CONSISTENT-FIELD CONVERGENCE--------------------------------------------
--- !BeginCycle
iteration_state: {dtset: 1, itime: 3, icycle: 1, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5187330285847    -8.519E+00 2.416E-10 9.385E-03
 ETOT  2  -8.5187366906762    -3.662E-06 8.921E-11 3.170E-04
 ETOT  3  -8.5187367740499    -8.337E-08 1.513E-09 4.113E-06
 ETOT  4  -8.5187367747528    -7.029E-10 1.619E-11 3.783E-09
 At SCF step    4, etot is converged : 
  for the second time, diff in etot=  7.029E-10 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -7.72182698E-07  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -7.72182698E-07  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -7.72182698E-07  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, itime: 3, icycle: 1, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.1039784,   5.1039784, ]
- [  5.1039784,   0.0000000,   5.1039784, ]
- [  5.1039784,   5.1039784,   0.0000000, ]
lattice_lengths: [   7.21812,    7.21812,    7.21812, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6592335E+02
convergence: {deltae: -7.029E-10, res2:  3.783E-09, residm:  1.619E-11, diffor: null, }
etotal    :  -8.51873677E+00
entropy   :   0.00000000E+00
fermie    :   1.50814176E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -7.72182698E-07,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -7.72182698E-07,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -7.72182698E-07, ]
pressure_GPa:   2.2718E-02
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.80953187
    2        2.00000          1.80953187
---OUTPUT-----------------------------------------------------------------------
 Cartesian coordinates (xcart) [bohr]
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.55198920207022E+00  2.55198920207022E+00  2.55198920207022E+00
 Reduced coordinates (xred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.50000000000000E-01  2.50000000000000E-01  2.50000000000000E-01
 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms)
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 Gradient of E wrt nuclear positions in reduced coordinates (gred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
 Scale of Primitive Cell (acell) [bohr]
  1.02079568082809E+01  1.02079568082809E+01  1.02079568082809E+01
 Real space primitive translations (rprimd) [bohr]
  0.00000000000000E+00  5.10397840414044E+00  5.10397840414044E+00
  5.10397840414044E+00  0.00000000000000E+00  5.10397840414044E+00
  5.10397840414044E+00  5.10397840414044E+00  0.00000000000000E+00
 Unitary Cell Volume (ucvol) [Bohr^3]=  2.65923354203700E+02
 Angles (23,13,12)= [degrees]
  6.00000000000000E+01  6.00000000000000E+01  6.00000000000000E+01
 Lengths [Bohr]
  7.21811548119479E+00  7.21811548119479E+00  7.21811548119479E+00
 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3]
 -7.72182698183851E-07  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00 -7.72182698183634E-07  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00 -7.72182698183417E-07
 Total energy (etotal) [Ha]= -8.51873677475283E+00
 Difference of energy with previous step (new-old):
           Absolute (Ha)=-1.51068E-05
           Relative     =-1.77336E-06
--- Iteration: ( 4/10) Internal Cycle: (1/1)
--------------------------------------------------------------------------------
---SELF-CONSISTENT-FIELD CONVERGENCE--------------------------------------------
--- !BeginCycle
iteration_state: {dtset: 1, itime: 4, icycle: 1, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5187367931248    -8.519E+00 6.684E-13 1.584E-05
 ETOT  2  -8.5187367993018    -6.177E-09 1.506E-13 5.367E-07
 ETOT  3  -8.5187367994431    -1.413E-10 2.565E-12 6.933E-09
 At SCF step    3, etot is converged : 
  for the second time, diff in etot=  1.413E-10 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -2.02798783E-08  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -2.02798783E-08  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -2.02798783E-08  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, itime: 4, icycle: 1, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.1043734,   5.1043734, ]
- [  5.1043734,   0.0000000,   5.1043734, ]
- [  5.1043734,   5.1043734,   0.0000000, ]
lattice_lengths: [   7.21867,    7.21867,    7.21867, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6598510E+02
convergence: {deltae: -1.413E-10, res2:  6.933E-09, residm:  2.565E-12, diffor: null, }
etotal    :  -8.51873680E+00
entropy   :   0.00000000E+00
fermie    :   1.50742294E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -2.02798783E-08,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -2.02798783E-08,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -2.02798783E-08, ]
pressure_GPa:   5.9665E-04
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.80972965
    2        2.00000          1.80972965
---OUTPUT-----------------------------------------------------------------------
 Cartesian coordinates (xcart) [bohr]
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.55218669427223E+00  2.55218669427223E+00  2.55218669427223E+00
 Reduced coordinates (xred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.50000000000000E-01  2.50000000000000E-01  2.50000000000000E-01
 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms)
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 Gradient of E wrt nuclear positions in reduced coordinates (gred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
 Scale of Primitive Cell (acell) [bohr]
  1.02087467770889E+01  1.02087467770889E+01  1.02087467770889E+01
 Real space primitive translations (rprimd) [bohr]
  0.00000000000000E+00  5.10437338854445E+00  5.10437338854445E+00
  5.10437338854445E+00  0.00000000000000E+00  5.10437338854445E+00
  5.10437338854445E+00  5.10437338854445E+00  0.00000000000000E+00
 Unitary Cell Volume (ucvol) [Bohr^3]=  2.65985096455280E+02
 Angles (23,13,12)= [degrees]
  6.00000000000000E+01  6.00000000000000E+01  6.00000000000000E+01
 Lengths [Bohr]
  7.21867407349588E+00  7.21867407349588E+00  7.21867407349588E+00
 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3]
 -2.02798783449903E-08  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00 -2.02798783449903E-08  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00 -2.02798783452071E-08
 Total energy (etotal) [Ha]= -8.51873679944311E+00
 Difference of energy with previous step (new-old):
           Absolute (Ha)=-2.46903E-08
           Relative     =-2.89835E-09
 At Broyd/MD step   4, gradients are converged : 
  max grad (force/stress) = 2.0280E-06 < tolmxf= 5.0000E-05 ha/bohr (free atoms)
================================================================================
 ----iterations are completed or convergence reached----
 Mean square residual over all n,k,spin=   10.192E-13; max=  25.649E-13
 reduced coordinates (array xred) for    2 atoms
       0.000000000000      0.000000000000      0.000000000000
       0.250000000000      0.250000000000      0.250000000000
 rms dE/dt=  0.0000E+00; max dE/dt=  0.0000E+00; dE/dt below (all hartree)
    1       0.000000000000      0.000000000000      0.000000000000
    2       0.000000000000      0.000000000000      0.000000000000
 cartesian coordinates (angstrom) at end:
    1      0.00000000000000     0.00000000000000     0.00000000000000
    2      1.35055903067552     1.35055903067552     1.35055903067552
 cartesian forces (hartree/bohr) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 h/b
 cartesian forces (eV/Angstrom) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 e/A
 length scales= 10.208746777089 10.208746777089 10.208746777089 bohr
              =  5.402236122702  5.402236122702  5.402236122702 angstroms
 prteigrs : about to open file tbase3_4o_DS1_EIG
 Fermi (or HOMO) energy (hartree) =   0.15074   Average Vxc (hartree)=  -0.34875
 Eigenvalues (hartree) for nkpt=   2  k points:
 kpt#   1, nband=  5, wtk=  0.75000, kpt= -0.2500  0.5000  0.0000 (reduced coord)
  -0.16335   -0.05774    0.04613    0.09663    0.23076
 prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state     : {dtset: 1, itime: 4, icycle: 1, }
comment             : Components of total free energy in Hartree
kinetic             :  3.11659775458184E+00
hartree             :  5.50622698027095E-01
xc                  : -3.11182239438947E+00
Ewald energy        : -8.44263949221463E+00
psp_core            :  4.01227959559409E-01
local_psp           : -2.34611810649195E+00
non_local_psp       :  1.31339478148460E+00
total_energy        : -8.51873679944311E+00
total_energy_eV     : -2.31806617051954E+02
band_energy         : -6.78997611882411E-02
...
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -2.02798783E-08  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -2.02798783E-08  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -2.02798783E-08  sigma(2 1)=  0.00000000E+00
-Cartesian components of stress tensor (GPa)         [Pressure=  5.9665E-04 GPa]
- sigma(1 1)= -5.96654520E-04  sigma(3 2)=  0.00000000E+00
- sigma(2 2)= -5.96654520E-04  sigma(3 1)=  0.00000000E+00
- sigma(3 3)= -5.96654520E-04  sigma(2 1)=  0.00000000E+00
================================================================================
== DATASET  2 ==================================================================
-   mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 10, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 611, }
cutoff_energies: {ecut:  12.0, pawecutdg:  -1.0, }
electrons: {nelect:   8.00000000E+00, charge:   0.00000000E+00, occopt:   1.00000000E+00, tsmear:   1.00000000E-02, }
meta: {optdriver: 0, ionmov: 2, optcell: 1, iscf: 7, paral_kgb: 0, }
...
 mkfilename : getwfk/=0, take file _WFK from output of DATASET   1.
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  5.0900000  5.0900000  G(1)= -0.0982318  0.0982318  0.0982318
 R(2)=  5.0900000  0.0000000  5.0900000  G(2)=  0.0982318 -0.0982318  0.0982318
 R(3)=  5.0900000  5.0900000  0.0000000  G(3)=  0.0982318  0.0982318 -0.0982318
 Unit cell volume ucvol=  2.6374446E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  24  24  24
         ecut(hartree)=     13.230   => boxcut(ratio)=   2.03626
--------------------------------------------------------------------------------
-inwffil : will read wavefunctions from disk file tbase3_4o_DS1_WFK
_setup2: Arith. and geom. avg. npw (full set) are     605.656     605.641
================================================================================
=== [ionmov= 2] Broyden-Fletcher-Goldfard-Shanno method (forces)            
================================================================================
--- Iteration: ( 1/10) Internal Cycle: (1/1)
--------------------------------------------------------------------------------
---SELF-CONSISTENT-FIELD CONVERGENCE--------------------------------------------
--- !BeginCycle
iteration_state: {dtset: 2, itime: 1, icycle: 1, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5249411287672    -8.525E+00 2.712E-04 7.214E-02
 ETOT  2  -8.5249772439225    -3.612E-05 5.006E-07 8.658E-04
 ETOT  3  -8.5249775573350    -3.134E-07 1.357E-07 1.190E-05
 ETOT  4  -8.5249775599597    -2.625E-09 8.381E-09 3.718E-08
 At SCF step    4, etot is converged : 
  for the second time, diff in etot=  2.625E-09 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -1.51894000E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -1.51894000E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -1.51894000E-05  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 2, itime: 1, icycle: 1, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0900000,   5.0900000, ]
- [  5.0900000,   0.0000000,   5.0900000, ]
- [  5.0900000,   5.0900000,   0.0000000, ]
lattice_lengths: [   7.19835,    7.19835,    7.19835, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6374446E+02
convergence: {deltae: -2.625E-09, res2:  3.718E-08, residm:  8.381E-09, diffor: null, }
etotal    :  -8.52497756E+00
entropy   :   0.00000000E+00
fermie    :   1.69760113E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.51894000E-05,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -1.51894000E-05,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -1.51894000E-05, ]
pressure_GPa:   4.4689E-01
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.79935483
    2        2.00000          1.79935483
---OUTPUT-----------------------------------------------------------------------
 Cartesian coordinates (xcart) [bohr]
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.54500000000000E+00  2.54500000000000E+00  2.54500000000000E+00
 Reduced coordinates (xred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.50000000000000E-01  2.50000000000000E-01  2.50000000000000E-01
 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms)
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 Gradient of E wrt nuclear positions in reduced coordinates (gred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
 Scale of Primitive Cell (acell) [bohr]
  1.01800000000000E+01  1.01800000000000E+01  1.01800000000000E+01
 Real space primitive translations (rprimd) [bohr]
  0.00000000000000E+00  5.09000000000000E+00  5.09000000000000E+00
  5.09000000000000E+00  0.00000000000000E+00  5.09000000000000E+00
  5.09000000000000E+00  5.09000000000000E+00  0.00000000000000E+00
 Unitary Cell Volume (ucvol) [Bohr^3]=  2.63744458000000E+02
 Angles (23,13,12)= [degrees]
  6.00000000000000E+01  6.00000000000000E+01  6.00000000000000E+01
 Lengths [Bohr]
  7.19834703247905E+00  7.19834703247905E+00  7.19834703247905E+00
 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3]
 -1.51893999850881E-05  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00 -1.51893999850883E-05  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00 -1.51893999850877E-05
 Total energy (etotal) [Ha]= -8.52497755995966E+00
--- Iteration: ( 2/10) Internal Cycle: (1/1)
--------------------------------------------------------------------------------
---SELF-CONSISTENT-FIELD CONVERGENCE--------------------------------------------
--- !BeginCycle
iteration_state: {dtset: 2, itime: 2, icycle: 1, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5249819963373    -8.525E+00 4.260E-09 5.372E-04
 ETOT  2  -8.5249822124140    -2.161E-07 7.727E-10 1.654E-05
 ETOT  3  -8.5249822168425    -4.429E-09 4.218E-10 2.372E-07
 At SCF step    3, etot is converged : 
  for the second time, diff in etot=  4.429E-09 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -1.06237158E-05  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -1.06237158E-05  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -1.06237158E-05  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 2, itime: 2, icycle: 1, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0923194,   5.0923194, ]
- [  5.0923194,   0.0000000,   5.0923194, ]
- [  5.0923194,   5.0923194,   0.0000000, ]
lattice_lengths: [   7.20163,    7.20163,    7.20163, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6410517E+02
convergence: {deltae: -4.429E-09, res2:  2.372E-07, residm:  4.218E-10, diffor: null, }
etotal    :  -8.52498222E+00
entropy   :   0.00000000E+00
fermie    :   1.69312508E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -1.06237158E-05,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -1.06237158E-05,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -1.06237158E-05, ]
pressure_GPa:   3.1256E-01
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.80051516
    2        2.00000          1.80051516
---OUTPUT-----------------------------------------------------------------------
 Cartesian coordinates (xcart) [bohr]
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.54615971068886E+00  2.54615971068886E+00  2.54615971068886E+00
 Reduced coordinates (xred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.50000000000000E-01  2.50000000000000E-01  2.50000000000000E-01
 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms)
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 Gradient of E wrt nuclear positions in reduced coordinates (gred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
 Scale of Primitive Cell (acell) [bohr]
  1.01846388427554E+01  1.01846388427554E+01  1.01846388427554E+01
 Real space primitive translations (rprimd) [bohr]
  0.00000000000000E+00  5.09231942137772E+00  5.09231942137772E+00
  5.09231942137772E+00  0.00000000000000E+00  5.09231942137772E+00
  5.09231942137772E+00  5.09231942137772E+00  0.00000000000000E+00
 Unitary Cell Volume (ucvol) [Bohr^3]=  2.64105173127445E+02
 Angles (23,13,12)= [degrees]
  6.00000000000000E+01  6.00000000000000E+01  6.00000000000000E+01
 Lengths [Bohr]
  7.20162718964829E+00  7.20162718964829E+00  7.20162718964829E+00
 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3]
 -1.06237157604960E-05  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00 -1.06237157604951E-05  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00 -1.06237157604955E-05
 Total energy (etotal) [Ha]= -8.52498221684250E+00
 Difference of energy with previous step (new-old):
           Absolute (Ha)=-4.65688E-06
           Relative     =-5.46263E-07
--- Iteration: ( 3/10) Internal Cycle: (1/1)
--------------------------------------------------------------------------------
---SELF-CONSISTENT-FIELD CONVERGENCE--------------------------------------------
--- !BeginCycle
iteration_state: {dtset: 2, itime: 3, icycle: 1, }
solver: {iscf: 7, nstep: 10, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5249855296915    -8.525E+00 1.896E-08 2.936E-03
 ETOT  2  -8.5249867119923    -1.182E-06 3.719E-09 9.116E-05
 ETOT  3  -8.5249867364417    -2.445E-08 2.018E-09 1.307E-06
 ETOT  4  -8.5249867366765    -2.348E-10 3.968E-10 1.221E-09
 At SCF step    4, etot is converged : 
  for the second time, diff in etot=  2.348E-10 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -9.28297833E-08  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -9.28297833E-08  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -9.28297833E-08  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 2, itime: 3, icycle: 1, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0977410,   5.0977410, ]
- [  5.0977410,   0.0000000,   5.0977410, ]
- [  5.0977410,   5.0977410,   0.0000000, ]
lattice_lengths: [   7.20929,    7.20929,    7.20929, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6494962E+02
convergence: {deltae: -2.348E-10, res2:  1.221E-09, residm:  3.968E-10, diffor: null, }
etotal    :  -8.52498674E+00
entropy   :   0.00000000E+00
fermie    :   1.68268538E-01
cartesian_stress_tensor: # hartree/bohr^3
- [ -9.28297833E-08,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,  -9.28297833E-08,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,  -9.28297833E-08, ]
pressure_GPa:   2.7311E-03
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.80323678
    2        2.00000          1.80323678
---OUTPUT-----------------------------------------------------------------------
 Cartesian coordinates (xcart) [bohr]
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.54887051451003E+00  2.54887051451003E+00  2.54887051451003E+00
 Reduced coordinates (xred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  2.50000000000000E-01  2.50000000000000E-01  2.50000000000000E-01
 Cartesian forces (fcart) [Ha/bohr]; max,rms= 0.00000E+00 0.00000E+00 (free atoms)
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 -0.00000000000000E+00 -0.00000000000000E+00 -0.00000000000000E+00
 Gradient of E wrt nuclear positions in reduced coordinates (gred)
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00  0.00000000000000E+00
 Scale of Primitive Cell (acell) [bohr]
  1.01954820580401E+01  1.01954820580401E+01  1.01954820580401E+01
 Real space primitive translations (rprimd) [bohr]
  0.00000000000000E+00  5.09774102902006E+00  5.09774102902006E+00
  5.09774102902006E+00  0.00000000000000E+00  5.09774102902006E+00
  5.09774102902006E+00  5.09774102902006E+00  0.00000000000000E+00
 Unitary Cell Volume (ucvol) [Bohr^3]=  2.64949621116082E+02
 Angles (23,13,12)= [degrees]
  6.00000000000000E+01  6.00000000000000E+01  6.00000000000000E+01
 Lengths [Bohr]
  7.20929450070595E+00  7.20929450070595E+00  7.20929450070595E+00
 Stress tensor in cartesian coordinates (strten) [Ha/bohr^3]
 -9.28297832854166E-08  0.00000000000000E+00  0.00000000000000E+00
  0.00000000000000E+00 -9.28297832858502E-08  0.00000000000000E+00
  0.00000000000000E+00  0.00000000000000E+00 -9.28297832856334E-08
 Total energy (etotal) [Ha]= -8.52498673667654E+00
 Difference of energy with previous step (new-old):
           Absolute (Ha)=-4.51983E-06
           Relative     =-5.30187E-07
 At Broyd/MD step   3, gradients are converged : 
  max grad (force/stress) = 9.2830E-06 < tolmxf= 5.0000E-05 ha/bohr (free atoms)
================================================================================
 ----iterations are completed or convergence reached----
 Mean square residual over all n,k,spin=   11.520E-12; max=  39.676E-11
 reduced coordinates (array xred) for    2 atoms
       0.000000000000      0.000000000000      0.000000000000
       0.250000000000      0.250000000000      0.250000000000
 rms dE/dt=  0.0000E+00; max dE/dt=  0.0000E+00; dE/dt below (all hartree)
    1       0.000000000000      0.000000000000      0.000000000000
    2       0.000000000000      0.000000000000      0.000000000000
 cartesian coordinates (angstrom) at end:
    1      0.00000000000000     0.00000000000000     0.00000000000000
    2      1.34880418392577     1.34880418392577     1.34880418392577
 cartesian forces (hartree/bohr) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 h/b
 cartesian forces (eV/Angstrom) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 e/A
 length scales= 10.195482058040 10.195482058040 10.195482058040 bohr
              =  5.395216735703  5.395216735703  5.395216735703 angstroms
 prteigrs : about to open file tbase3_4o_DS2_EIG
 Fermi (or HOMO) energy (hartree) =   0.16827   Average Vxc (hartree)=  -0.34975
 Eigenvalues (hartree) for nkpt=  10  k points:
 kpt#   1, nband=  5, wtk=  0.09375, kpt= -0.1250 -0.2500  0.0000 (reduced coord)
  -0.23779    0.05934    0.12966    0.13253    0.25611
 prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state     : {dtset: 2, itime: 3, icycle: 1, }
comment             : Components of total free energy in Hartree
kinetic             :  3.10258223832060E+00
hartree             :  5.39382010075433E-01
xc                  : -3.11018605792668E+00
Ewald energy        : -8.45362369485031E+00
psp_core            :  4.02796037504832E-01
local_psp           : -2.32456961104113E+00
non_local_psp       :  1.31863234124071E+00
total_energy        : -8.52498673667654E+00
total_energy_eV     : -2.31976686493114E+02
band_energy         : -7.53111627482085E-02
...
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)= -9.28297833E-08  sigma(3 2)=  0.00000000E+00
  sigma(2 2)= -9.28297833E-08  sigma(3 1)=  0.00000000E+00
  sigma(3 3)= -9.28297833E-08  sigma(2 1)=  0.00000000E+00
-Cartesian components of stress tensor (GPa)         [Pressure=  2.7311E-03 GPa]
- sigma(1 1)= -2.73114606E-03  sigma(3 2)=  0.00000000E+00
- sigma(2 2)= -2.73114606E-03  sigma(3 1)=  0.00000000E+00
- sigma(3 3)= -2.73114606E-03  sigma(2 1)=  0.00000000E+00
== END DATASET(S) ==============================================================
================================================================================
 -outvars: echo values of variables after computation  --------
            acell1     1.0208746777E+01  1.0208746777E+01  1.0208746777E+01 Bohr
            acell2     1.0195482058E+01  1.0195482058E+01  1.0195482058E+01 Bohr
              amu      2.80855000E+01
           diemac      1.20000000E+01
          dilatmx      1.05000000E+00
             ecut      1.20000000E+01 Hartree
           ecutsm      5.00000000E-01 Hartree
           etotal1    -8.5187367994E+00
           etotal2    -8.5249867367E+00
            fcart1    -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
                      -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
            fcart2    -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
                      -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-          fftalg         312
           getwfk          -1
           ionmov           2
              ixc       -1012
           jdtset        1    2
              kpt1    -2.50000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  0.00000000E+00  0.00000000E+00
              kpt2    -1.25000000E-01 -2.50000000E-01  0.00000000E+00
                      -1.25000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01 -3.75000000E-01  0.00000000E+00
                      -1.25000000E-01 -3.75000000E-01  1.25000000E-01
                      -1.25000000E-01  2.50000000E-01  0.00000000E+00
                      -2.50000000E-01  3.75000000E-01  0.00000000E+00
                      -3.75000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  5.00000000E-01  1.25000000E-01
                      -1.25000000E-01  0.00000000E+00  0.00000000E+00
                      -3.75000000E-01  0.00000000E+00  0.00000000E+00
         kptrlatt1       2   -2    2     -2    2    2     -2   -2    2
         kptrlatt2       4   -4    4     -4    4    4     -4   -4    4
          kptrlen1     2.03600000E+01
          kptrlen2     4.07200000E+01
P           mkmem1          2
P           mkmem2         10
            natom           2
            nband1          5
            nband2          5
           ndtset           2
            ngfft          24      24      24
             nkpt1          2
             nkpt2         10
            nstep          10
             nsym          48
            ntime          10
           ntypat           1
              occ1     2.000000  2.000000  2.000000  2.000000  0.000000
              occ2     2.000000  2.000000  2.000000  2.000000  0.000000
          optcell           1
            rprim      0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
                       5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
                       5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
           shiftk      5.00000000E-01  5.00000000E-01  5.00000000E-01
          spgroup         227
           strten1    -2.0279878345E-08 -2.0279878345E-08 -2.0279878345E-08
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           strten2    -9.2829783285E-08 -9.2829783286E-08 -9.2829783286E-08
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           symrel      1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
                       0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0
                      -1  0  0  -1  0  1  -1  1  0       1  0  0   1  0 -1   1 -1  0
                       0  1 -1   1  0 -1   0  0 -1       0 -1  1  -1  0  1   0  0  1
                      -1  0  0  -1  1  0  -1  0  1       1  0  0   1 -1  0   1  0 -1
                       0 -1  1   1 -1  0   0 -1  0       0  1 -1  -1  1  0   0  1  0
                       1  0  0   0  0  1   0  1  0      -1  0  0   0  0 -1   0 -1  0
                       0  1 -1   0  0 -1   1  0 -1       0 -1  1   0  0  1  -1  0  1
                      -1  0  1  -1  1  0  -1  0  0       1  0 -1   1 -1  0   1  0  0
                       0 -1  0   1 -1  0   0 -1  1       0  1  0  -1  1  0   0  1 -1
                       1  0 -1   0  0 -1   0  1 -1      -1  0  1   0  0  1   0 -1  1
                       0  1  0   0  0  1   1  0  0       0 -1  0   0  0 -1  -1  0  0
                       1  0 -1   0  1 -1   0  0 -1      -1  0  1   0 -1  1   0  0  1
                       0 -1  0   0 -1  1   1 -1  0       0  1  0   0  1 -1  -1  1  0
                      -1  0  1  -1  0  0  -1  1  0       1  0 -1   1  0  0   1 -1  0
                       0  1  0   1  0  0   0  0  1       0 -1  0  -1  0  0   0  0 -1
                       0  0 -1   0  1 -1   1  0 -1       0  0  1   0 -1  1  -1  0  1
                       1 -1  0   0 -1  1   0 -1  0      -1  1  0   0  1 -1   0  1  0
                       0  0  1   1  0  0   0  1  0       0  0 -1  -1  0  0   0 -1  0
                      -1  1  0  -1  0  0  -1  0  1       1 -1  0   1  0  0   1  0 -1
                       0  0  1   0  1  0   1  0  0       0  0 -1   0 -1  0  -1  0  0
                       1 -1  0   0 -1  0   0 -1  1      -1  1  0   0  1  0   0  1 -1
                       0  0 -1   1  0 -1   0  1 -1       0  0  1  -1  0  1   0 -1  1
                      -1  1  0  -1  0  1  -1  0  0       1 -1  0   1  0 -1   1  0  0
            tnons      0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
           toldfe      1.00000000E-06 Hartree
            typat      1  1
              wtk1       0.75000    0.25000
              wtk2       0.09375    0.09375    0.09375    0.18750    0.09375    0.09375
                         0.09375    0.18750    0.03125    0.03125
           xangst1     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.3505590307E+00  1.3505590307E+00  1.3505590307E+00
           xangst2     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.3488041839E+00  1.3488041839E+00  1.3488041839E+00
            xcart1     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5521866943E+00  2.5521866943E+00  2.5521866943E+00
            xcart2     0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5488705145E+00  2.5488705145E+00  2.5488705145E+00
             xred      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
            znucl       14.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
 Suggested references for the acknowledgment of ABINIT usage.
 The users of ABINIT have little formal obligations with respect to the ABINIT group
 (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
 However, it is common practice in the scientific literature,
 to acknowledge the efforts of people that have made the research possible.
 In this spirit, please find below suggested citations of work written by ABINIT developers,
 corresponding to implementations inside of ABINIT that you have used in the present run.
 Note also that it will be of great value to readers of publications presenting these results,
 to read papers enabling them to understand the theoretical formalism and details
 of the ABINIT implementation.
 For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Libxc: A library of exchange and correlation functionals for density functional theory.
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
- Comment: to be cited when LibXC is used (negative value of ixc)
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm. 
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] Optimized norm-conserving Vanderbilt pseudopotentials.
- D.R. Hamann, Phys. Rev. B 88, 085117 (2013).
- Comment: Some pseudopotential generated using the ONCVPSP code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2013
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin, 
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys 
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm. 
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc.   0 individual time (sec): cpu=          4.1  wall=          4.2
================================================================================
 Calculation completed.
.Delivered   2 WARNINGs and   5 COMMENTs to log file.
+Overall time at end (sec) : cpu=          4.1  wall=          4.2
You should obtain the following evolution of the lattice parameters:
acell1     1.0208746777E+01  1.0208746777E+01  1.0208746777E+01 Bohr
acell2     1.0195482058E+01  1.0195482058E+01  1.0195482058E+01 Bohr
with the following very small residual stresses:
strten1    -2.0279878345E-08 -2.0279878345E-08 -2.0279878345E-08
            0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
strten2    -9.2829783285E-08 -9.2829783286E-08 -9.2829783286E-08
            0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
The stress tensor is given in Hartree/Bohr3, and the order of the components is:
                        11  22  33
                        23  13  12
There is only a 0.13% relative difference between acell1 and acell2. So, our converged LDA value for Silicon, with the Si.psp8 pseudopotential of the PseudoDojo website is 10.195 Bohr, that is 5.395 Angstrom. The experimental value is 5.431 Angstrom at 25 degree Celsius, see R.W.G. Wyckoff, Crystal structures Ed. Wiley and sons, New-York (1963) or the NIST database.
Computing the band structure¶
We fix the parameters acell to the theoretical value of 3 * 10.195, and we fix also the grid of k-points (the 4x4x4 FCC grid, equivalent to a 8x8x8 Monkhorst-pack grid). We will ask for 8 bands (4 valence and 4 conduction).
A band structure can be computed by solving the Kohn-Sham equation for many different k-points, along different segments of the Brillouin zone. The potential that enters the Kohn-Sham must be derived from a previous self-consistent calculation, and will not vary during the scan of different k-point lines.
Suppose that you want to make a L-Gamma-X-(U-)Gamma circuit, with at least 10 divisions for each segment. The circuit will be obtained easily by the following choice of segment end points:
L     (1/2 0 0)
Gamma (0 0 0)
X     (0 1/2 1/2)
Gamma (1 1 1)
In order to enforce at least 10 divisions for each segment, one uses the input variable ndivsm. ABINIT will generate roughly the same distance between points along each segment, despite each segment having a different length in reciprocal space.
Note:
- 
the last Gamma point is in another cell of the reciprocal space than the first one, this choice allows to construct the X-U-Gamma segment easily;
 - 
the k-points are specified using reduced coordinates - in agreement with the input setting of the primitive 2-atom unit cell - in standard textbooks, you will often find the L, Gamma or X point given in coordinates of the conventional 8-atom cell: the above-mentioned circuit is then (½ ½ ½)-(0 0 0)-(1 0 0)-(1 1 1), but such (conventional) coordinates cannot be used with the 2-atom (non-conventional) cell.
 
So, you should set up in your input file, for the first dataset, a usual SCF calculation in which you output the density (prtden 1), and, for the second dataset:
- fix iscf to -2, to make a non-self-consistent calculation,
 - define getden -1, to take the output density of dataset 1,
 - set nband to 8,
 - set kptopt to -3, to define three segments in the brillouin Zone;
 - set ndivsm to 10,
 - 
set kptbounds to
0.5 0.0 0.0 # L point 0.0 0.0 0.0 # Gamma point 0.0 0.5 0.5 # X point 1.0 1.0 1.0 # Gamma point in another cell - 
set enunit to 1, in order to have eigenenergies in eV,
 - the only tolerance criterion admitted for non-self-consistent calculations is tolwfr. You should set it to 1.0d-10 (or so), and suppress toldfe.
 - The nstep parameter was set to 20 to make sure convergence can be reached.
 
The input file $ABI_TESTS/tutorial/Input/tbase3_5.abi is an example,
# Crystalline silicon # # Computation of the band structure. # First, a SCF density computation, then a non-SCF band structure calculation. ndtset 2 #Definition of the unit cell acell 3*10.195 # This is equivalent to 10.195 10.195 10.195 rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell) 0.5 0.0 0.5 0.5 0.5 0.0 #Definition of the atom types ntypat 1 # There is only one type of atom znucl 14 # The keyword "znucl" refers to the atomic number of the # possible type(s) of atom. The pseudopotential(s) # mentioned in the "files" file must correspond # to the type(s) of atom. Here, the only type is Silicon. pp_dirpath "$ABI_PSPDIR" # This is the path to the directory were # pseudopotentials for tests are stored pseudos "Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8" #Definition of the atoms natom 2 # There are two atoms typat 1 1 # They both are of type 1, that is, Silicon. xred # This keyword indicate that the location of the atoms # will follow, one triplet of number for each atom 0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1. 1/4 1/4 1/4 # Triplet giving the REDUCED coordinate of atom 2. #Definition of the planewave basis set ecut 12.0 # Maximal kinetic energy cut-off, in Hartree #Definition of the SCF procedure nstep 20 # Maximal number of SCF cycles diemac 12.0 # Although this is not mandatory, it is worth to # precondition the SCF cycle. The model dielectric # function used as the standard preconditioner # is described in the "dielng" input variable section. # Here, we follow the prescription for bulk silicon. #Dataset 1 : usual self-consistent calculation kptopt1 1 # Option for the automatic generation of k points, # taking into account the symmetry nshiftk1 4 shiftk1 0.5 0.5 0.5 # These shifts will be the same for all grids 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 ngkpt1 4 4 4 prtden1 1 # Print the density, for use by dataset 2 toldfe1 1.0d-6 # This value is way too large for most realistic studies of materials #Dataset 2 : the band structure iscf2 -2 getden2 -1 kptopt2 -3 # will have three segments in the band structure nband2 8 ndivsm2 10 # 10 divisions of the smallest of the 3 segments, delimited # by the 4 points defined by kptbounds. kptbounds2 0.5 0.0 0.0 # L point 0.0 0.0 0.0 # Gamma point 0.0 0.5 0.5 # X point 1.0 1.0 1.0 # Gamma point in another cell. tolwfr2 1.0d-12 enunit2 1 # Will output the eigenenergies in eV ############################################################## # This section is used only for regression testing of ABINIT # ############################################################## #%%<BEGIN TEST_INFO> #%% [setup] #%% executable = abinit #%% [files] #%% files_to_test = #%% tbase3_5.abo, tolnlines= 0, tolabs= 0.000e+00, tolrel= 0.000e+00 #%% [paral_info] #%% max_nprocs = 4 #%% [extra_info] #%% authors = Unknown #%% keywords = #%% description = #%% Crystalline silicon #%% #%% Computation of the band structure. #%% First, a SCF density computation, then a non-SCF band structure calculation. #%%<END TEST_INFO>
while $ABI_TESTS/tutorial/Refs/tbase3_5.abo is a reference output file.
.Version 9.7.2 of ABINIT 
.(MPI version, prepared for a x86_64_linux_gnu9.3 computer) 
.Copyright (C) 1998-2022 ABINIT group . 
 ABINIT comes with ABSOLUTELY NO WARRANTY.
 It is free software, and you are welcome to redistribute it
 under certain conditions (GNU General Public License,
 see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
 ABINIT is a project of the Universite Catholique de Louvain,
 Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
 Please read https://docs.abinit.org/theory/acknowledgments for suggested
 acknowledgments of the ABINIT effort.
 For more information, see https://www.abinit.org .
.Starting date : Thu 10 Feb 2022.
- ( at 14h12 )
- input  file    -> /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__beuken/tests/TestBot_MPI1/tutorial_tbase3_5/tbase3_5.abi
- output file    -> tbase3_5.abo
- root for input  files -> tbase3_5i
- root for output files -> tbase3_5o
 DATASET    1 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
 Values of the parameters that define the memory need for DATASET  1.
     intxc =       0    ionmov =       0      iscf =       7    lmnmax =       6
     lnmax =       6     mgfft =      24  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      48    n1xccc =    2501    ntypat =       1
    occopt =       1   xclevel =       1
-    mband =           5        mffmem =           1         mkmem =          10
       mpw =         534          nfft =       13824          nkpt =          10
================================================================================
P This job should need less than                       5.564 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      0.409 Mbytes ; DEN or POT disk file :      0.107 Mbytes.
================================================================================
 DATASET    2 : space group Fd -3 m (#227); Bravais cF (face-center cubic)
================================================================================
 Values of the parameters that define the memory need for DATASET  2.
     intxc =       0    ionmov =       0      iscf =      -2    lmnmax =       6
     lnmax =       6     mgfft =      24  mpssoang =       3    mqgrid =    3001
     natom =       2  nloc_mem =       1    nspden =       1   nspinor =       1
    nsppol =       1      nsym =      48    n1xccc =    2501    ntypat =       1
    occopt =       1   xclevel =       1
-    mband =           8        mffmem =           1         mkmem =          39
       mpw =         537          nfft =       13824          nkpt =          39
================================================================================
P This job should need less than                       6.246 Mbytes of memory.
  Rough estimation (10% accuracy) of disk space for files :
_ WF disk file :      2.559 Mbytes ; DEN or POT disk file :      0.107 Mbytes.
================================================================================
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values                                      
-   iomode0 =  0 , fftalg0 =312 , wfoptalg0 =  0
-
- outvars: echo of global parameters not present in the input file              
-  max_nthreads =    0
-
 -outvars: echo values of preprocessed input variables --------
            acell      1.0195000000E+01  1.0195000000E+01  1.0195000000E+01 Bohr
              amu      2.80855000E+01
           diemac      1.20000000E+01
             ecut      1.20000000E+01 Hartree
           enunit1          0
           enunit2          1
-          fftalg         312
           getden1          0
           getden2         -1
             iscf1          7
             iscf2         -2
           istwfk2       3    0    0    0    0    0    0    0    0    0
                         2    0    0    0    0    0    0    0    0    0
                         0    0    8    0    0    0    0    0    0    0
                         0    0    0    0    0    0    0    0    0
              ixc       -1012
           jdtset        1    2
              kpt1    -1.25000000E-01 -2.50000000E-01  0.00000000E+00
                      -1.25000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01 -3.75000000E-01  0.00000000E+00
                      -1.25000000E-01 -3.75000000E-01  1.25000000E-01
                      -1.25000000E-01  2.50000000E-01  0.00000000E+00
                      -2.50000000E-01  3.75000000E-01  0.00000000E+00
                      -3.75000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  5.00000000E-01  1.25000000E-01
                      -1.25000000E-01  0.00000000E+00  0.00000000E+00
                      -3.75000000E-01  0.00000000E+00  0.00000000E+00
              kpt2     5.00000000E-01  0.00000000E+00  0.00000000E+00
                       4.50000000E-01  0.00000000E+00  0.00000000E+00
                       4.00000000E-01  0.00000000E+00  0.00000000E+00
                       3.50000000E-01  0.00000000E+00  0.00000000E+00
                       3.00000000E-01  0.00000000E+00  0.00000000E+00
                       2.50000000E-01  0.00000000E+00  0.00000000E+00
                       2.00000000E-01  0.00000000E+00  0.00000000E+00
                       1.50000000E-01  0.00000000E+00  0.00000000E+00
                       1.00000000E-01  0.00000000E+00  0.00000000E+00
                       5.00000000E-02  0.00000000E+00  0.00000000E+00
                       0.00000000E+00  0.00000000E+00  0.00000000E+00
                       0.00000000E+00  4.16666667E-02  4.16666667E-02
                       0.00000000E+00  8.33333333E-02  8.33333333E-02
                       0.00000000E+00  1.25000000E-01  1.25000000E-01
                       0.00000000E+00  1.66666667E-01  1.66666667E-01
                       0.00000000E+00  2.08333333E-01  2.08333333E-01
                       0.00000000E+00  2.50000000E-01  2.50000000E-01
                       0.00000000E+00  2.91666667E-01  2.91666667E-01
                       0.00000000E+00  3.33333333E-01  3.33333333E-01
                       0.00000000E+00  3.75000000E-01  3.75000000E-01
                       0.00000000E+00  4.16666667E-01  4.16666667E-01
                       0.00000000E+00  4.58333333E-01  4.58333333E-01
                       0.00000000E+00  5.00000000E-01  5.00000000E-01
                       6.25000000E-02  5.31250000E-01  5.31250000E-01
                       1.25000000E-01  5.62500000E-01  5.62500000E-01
                       1.87500000E-01  5.93750000E-01  5.93750000E-01
                       2.50000000E-01  6.25000000E-01  6.25000000E-01
                       3.12500000E-01  6.56250000E-01  6.56250000E-01
                       3.75000000E-01  6.87500000E-01  6.87500000E-01
                       4.37500000E-01  7.18750000E-01  7.18750000E-01
                       5.00000000E-01  7.50000000E-01  7.50000000E-01
                       5.62500000E-01  7.81250000E-01  7.81250000E-01
                       6.25000000E-01  8.12500000E-01  8.12500000E-01
                       6.87500000E-01  8.43750000E-01  8.43750000E-01
                       7.50000000E-01  8.75000000E-01  8.75000000E-01
                       8.12500000E-01  9.06250000E-01  9.06250000E-01
                       8.75000000E-01  9.37500000E-01  9.37500000E-01
                       9.37500000E-01  9.68750000E-01  9.68750000E-01
                       1.00000000E+00  1.00000000E+00  1.00000000E+00
           kptopt1          1
           kptopt2         -3
         kptrlatt        4   -4    4     -4    4    4     -4   -4    4
          kptrlen1     4.07800000E+01
          kptrlen2     3.00000000E+01
P           mkmem1         10
P           mkmem2         39
            natom           2
            nband1          5
            nband2          8
           nbdbuf1          0
           nbdbuf2          2
           ndtset           2
           ndivsm1          0
           ndivsm2         10
            ngfft          24      24      24
             nkpt1         10
             nkpt2         39
            nstep          20
             nsym          48
           ntypat           1
              occ      2.000000  2.000000  2.000000  2.000000  0.000000
            rprim      0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
                       5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
                       5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
           shiftk      5.00000000E-01  5.00000000E-01  5.00000000E-01
          spgroup         227
           symrel      1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
                       0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0
                      -1  0  0  -1  0  1  -1  1  0       1  0  0   1  0 -1   1 -1  0
                       0  1 -1   1  0 -1   0  0 -1       0 -1  1  -1  0  1   0  0  1
                      -1  0  0  -1  1  0  -1  0  1       1  0  0   1 -1  0   1  0 -1
                       0 -1  1   1 -1  0   0 -1  0       0  1 -1  -1  1  0   0  1  0
                       1  0  0   0  0  1   0  1  0      -1  0  0   0  0 -1   0 -1  0
                       0  1 -1   0  0 -1   1  0 -1       0 -1  1   0  0  1  -1  0  1
                      -1  0  1  -1  1  0  -1  0  0       1  0 -1   1 -1  0   1  0  0
                       0 -1  0   1 -1  0   0 -1  1       0  1  0  -1  1  0   0  1 -1
                       1  0 -1   0  0 -1   0  1 -1      -1  0  1   0  0  1   0 -1  1
                       0  1  0   0  0  1   1  0  0       0 -1  0   0  0 -1  -1  0  0
                       1  0 -1   0  1 -1   0  0 -1      -1  0  1   0 -1  1   0  0  1
                       0 -1  0   0 -1  1   1 -1  0       0  1  0   0  1 -1  -1  1  0
                      -1  0  1  -1  0  0  -1  1  0       1  0 -1   1  0  0   1 -1  0
                       0  1  0   1  0  0   0  0  1       0 -1  0  -1  0  0   0  0 -1
                       0  0 -1   0  1 -1   1  0 -1       0  0  1   0 -1  1  -1  0  1
                       1 -1  0   0 -1  1   0 -1  0      -1  1  0   0  1 -1   0  1  0
                       0  0  1   1  0  0   0  1  0       0  0 -1  -1  0  0   0 -1  0
                      -1  1  0  -1  0  0  -1  0  1       1 -1  0   1  0  0   1  0 -1
                       0  0  1   0  1  0   1  0  0       0  0 -1   0 -1  0  -1  0  0
                       1 -1  0   0 -1  0   0 -1  1      -1  1  0   0  1  0   0  1 -1
                       0  0 -1   1  0 -1   0  1 -1       0  0  1  -1  0  1   0 -1  1
                      -1  1  0  -1  0  1  -1  0  0       1 -1  0   1  0 -1   1  0  0
            tnons      0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
           toldfe1     1.00000000E-06 Hartree
           toldfe2     0.00000000E+00 Hartree
           tolwfr1     0.00000000E+00
           tolwfr2     1.00000000E-12
            typat      1  1
              wtk1       0.09375    0.09375    0.09375    0.18750    0.09375    0.09375
                         0.09375    0.18750    0.03125    0.03125
              wtk2       1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000
           xangst      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.3487404104E+00  1.3487404104E+00  1.3487404104E+00
            xcart      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5487500000E+00  2.5487500000E+00  2.5487500000E+00
             xred      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
            znucl       14.00000
================================================================================
 chkinp: Checking input parameters for consistency, jdtset=   1.
 chkinp: Checking input parameters for consistency, jdtset=   2.
================================================================================
== DATASET  1 ==================================================================
-   mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 1, }
dimensions: {natom: 2, nkpt: 10, mband: 5, nsppol: 1, nspinor: 1, nspden: 1, mpw: 534, }
cutoff_energies: {ecut:  12.0, pawecutdg:  -1.0, }
electrons: {nelect:   8.00000000E+00, charge:   0.00000000E+00, occopt:   1.00000000E+00, tsmear:   1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: 7, paral_kgb: 0, }
...
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  5.0975000  5.0975000  G(1)= -0.0980873  0.0980873  0.0980873
 R(2)=  5.0975000  0.0000000  5.0975000  G(2)=  0.0980873 -0.0980873  0.0980873
 R(3)=  5.0975000  5.0975000  0.0000000  G(3)=  0.0980873  0.0980873 -0.0980873
 Unit cell volume ucvol=  2.6491204E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  24  24  24
         ecut(hartree)=     12.000   => boxcut(ratio)=   2.13493
--- Pseudopotential description ------------------------------------------------
- pspini: atom type   1  psp file is /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__beuken/tests/Psps_for_tests/Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8
- pspatm: opening atomic psp file    /home/buildbot/ABINIT/alps_gnu_9.3_openmpi/trunk__beuken/tests/Psps_for_tests/Pseudodojo_nc_sr_04_pw_standard_psp8/Si.psp8
- Si    ONCVPSP-3.3.0  r_core=   1.60303   1.72197   1.91712
- 14.00000   4.00000    171102                znucl, zion, pspdat
    8   -1012    2    4       600   0.00000   pspcod,pspxc,lmax,lloc,mmax,r2well
    5.99000000000000    4.00000000000000    0.00000000000000   rchrg,fchrg,qchrg
     nproj     2     2     2
     extension_switch     1
  pspatm : epsatm=    6.67004110
         --- l  ekb(1:nproj) -->
             0    5.565958    0.856966
             1    2.726111    0.629828
             2   -2.124804   -0.444604
 pspatm: atomic psp has been read  and splines computed
   1.06720658E+02                                ecore*ucvol(ha*bohr**3)
--------------------------------------------------------------------------------
_setup2: Arith. and geom. avg. npw (full set) are     526.125     526.114
================================================================================
--- !BeginCycle
iteration_state: {dtset: 1, }
solver: {iscf: 7, nstep: 20, nline: 4, wfoptalg: 0, }
tolerances: {toldfe: 1.00E-06, }
...
     iter   Etot(hartree)      deltaE(h)  residm     vres2
 ETOT  1  -8.5206684637965    -8.521E+00 9.016E-03 6.112E+00
 ETOT  2  -8.5249939685661    -4.326E-03 6.217E-04 1.007E-01
 ETOT  3  -8.5250263926622    -3.242E-05 9.207E-05 1.911E-03
 ETOT  4  -8.5250267694500    -3.768E-07 2.127E-05 6.895E-06
 ETOT  5  -8.5250267706767    -1.227E-09 3.870E-06 7.907E-09
 At SCF step    5, etot is converged : 
  for the second time, diff in etot=  1.227E-09 < toldfe=  1.000E-06
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)=  4.48086355E-06  sigma(3 2)=  0.00000000E+00
  sigma(2 2)=  4.48086355E-06  sigma(3 1)=  0.00000000E+00
  sigma(3 3)=  4.48086355E-06  sigma(2 1)=  0.00000000E+00
--- !ResultsGS
iteration_state: {dtset: 1, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0975000,   5.0975000, ]
- [  5.0975000,   0.0000000,   5.0975000, ]
- [  5.0975000,   5.0975000,   0.0000000, ]
lattice_lengths: [   7.20895,    7.20895,    7.20895, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6491204E+02
convergence: {deltae: -1.227E-09, res2:  7.907E-09, residm:  3.870E-06, diffor: null, }
etotal    :  -8.52502677E+00
entropy   :   0.00000000E+00
fermie    :   1.68317966E-01
cartesian_stress_tensor: # hartree/bohr^3
- [  4.48086355E-06,   0.00000000E+00,   0.00000000E+00, ]
- [  0.00000000E+00,   4.48086355E-06,   0.00000000E+00, ]
- [  0.00000000E+00,   0.00000000E+00,   4.48086355E-06, ]
pressure_GPa:  -1.3183E-01
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: # hartree/bohr
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
- [ -0.00000000E+00,  -0.00000000E+00,  -0.00000000E+00, ]
force_length_stats: {min:   0.00000000E+00, max:   0.00000000E+00, mean:   0.00000000E+00, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.80304533
    2        2.00000          1.80304533
================================================================================
 ----iterations are completed or convergence reached----
 Mean square residual over all n,k,spin=   15.470E-08; max=  38.696E-07
 reduced coordinates (array xred) for    2 atoms
       0.000000000000      0.000000000000      0.000000000000
       0.250000000000      0.250000000000      0.250000000000
 rms dE/dt=  0.0000E+00; max dE/dt=  0.0000E+00; dE/dt below (all hartree)
    1       0.000000000000      0.000000000000      0.000000000000
    2       0.000000000000      0.000000000000      0.000000000000
 cartesian coordinates (angstrom) at end:
    1      0.00000000000000     0.00000000000000     0.00000000000000
    2      1.34874041039376     1.34874041039376     1.34874041039376
 cartesian forces (hartree/bohr) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 h/b
 cartesian forces (eV/Angstrom) at end:
    1     -0.00000000000000    -0.00000000000000    -0.00000000000000
    2     -0.00000000000000    -0.00000000000000    -0.00000000000000
 frms,max,avg= 0.0000000E+00 0.0000000E+00   0.000E+00  0.000E+00  0.000E+00 e/A
 length scales= 10.195000000000 10.195000000000 10.195000000000 bohr
              =  5.394961641575  5.394961641575  5.394961641575 angstroms
 prteigrs : about to open file tbase3_5o_DS1_EIG
 Fermi (or HOMO) energy (hartree) =   0.16832   Average Vxc (hartree)=  -0.34977
 Eigenvalues (hartree) for nkpt=  10  k points:
 kpt#   1, nband=  5, wtk=  0.09375, kpt= -0.1250 -0.2500  0.0000 (reduced coord)
  -0.23777    0.05938    0.12970    0.13257    0.25614
 prteigrs : prtvol=0 or 1, do not print more k-points.
--- !EnergyTerms
iteration_state     : {dtset: 1, }
comment             : Components of total free energy in Hartree
kinetic             :  3.10298448398282E+00
hartree             :  5.39338809716161E-01
xc                  : -3.11027781766988E+00
Ewald energy        : -8.45402341405290E+00
psp_core            :  4.02853177352707E-01
local_psp           : -2.32442783591548E+00
non_local_psp       :  1.31852582590986E+00
total_energy        : -8.52502677067670E+00
total_energy_eV     : -2.31977775873660E+02
band_energy         : -7.50523745550966E-02
...
 Cartesian components of stress tensor (hartree/bohr^3)
  sigma(1 1)=  4.48086355E-06  sigma(3 2)=  0.00000000E+00
  sigma(2 2)=  4.48086355E-06  sigma(3 1)=  0.00000000E+00
  sigma(3 3)=  4.48086355E-06  sigma(2 1)=  0.00000000E+00
-Cartesian components of stress tensor (GPa)         [Pressure= -1.3183E-01 GPa]
- sigma(1 1)=  1.31831535E-01  sigma(3 2)=  0.00000000E+00
- sigma(2 2)=  1.31831535E-01  sigma(3 1)=  0.00000000E+00
- sigma(3 3)=  1.31831535E-01  sigma(2 1)=  0.00000000E+00
================================================================================
== DATASET  2 ==================================================================
-   mpi_nproc: 1, omp_nthreads: -1 (-1 if OMP is not activated)
--- !DatasetInfo
iteration_state: {dtset: 2, }
dimensions: {natom: 2, nkpt: 39, mband: 8, nsppol: 1, nspinor: 1, nspden: 1, mpw: 537, }
cutoff_energies: {ecut:  12.0, pawecutdg:  -1.0, }
electrons: {nelect:   8.00000000E+00, charge:   0.00000000E+00, occopt:   1.00000000E+00, tsmear:   1.00000000E-02, }
meta: {optdriver: 0, ionmov: 0, optcell: 0, iscf: -2, paral_kgb: 0, }
...
 mkfilename : getden/=0, take file _DEN from output of DATASET   1.
 Real(R)+Recip(G) space primitive vectors, cartesian coordinates (Bohr,Bohr^-1):
 R(1)=  0.0000000  5.0975000  5.0975000  G(1)= -0.0980873  0.0980873  0.0980873
 R(2)=  5.0975000  0.0000000  5.0975000  G(2)=  0.0980873 -0.0980873  0.0980873
 R(3)=  5.0975000  5.0975000  0.0000000  G(3)=  0.0980873  0.0980873 -0.0980873
 Unit cell volume ucvol=  2.6491204E+02 bohr^3
 Angles (23,13,12)=  6.00000000E+01  6.00000000E+01  6.00000000E+01 degrees
 getcut: wavevector=  0.0000  0.0000  0.0000  ngfft=  24  24  24
         ecut(hartree)=     12.000   => boxcut(ratio)=   2.13493
--------------------------------------------------------------------------------
================================================================================
 prteigrs : about to open file tbase3_5o_DS2_EIG
 Non-SCF case, kpt    1 (  0.50000  0.00000  0.00000), residuals and eigenvalues=
  4.01E-13  9.02E-13  3.65E-13  3.33E-13  1.71E-13  9.31E-13  2.57E-12  7.54E-09
 -1.7784E-01 -8.1253E-02  1.3455E-01  1.3455E-01  2.3406E-01  3.0068E-01
  3.0068E-01  4.5718E-01
 Non-SCF case, kpt    2 (  0.45000  0.00000  0.00000), residuals and eigenvalues=
  4.50E-13  6.89E-13  5.27E-13  3.31E-13  3.49E-13  6.40E-13  3.10E-13  4.49E-10
 -1.8297E-01 -7.3820E-02  1.3522E-01  1.3522E-01  2.3489E-01  3.0156E-01
  3.0156E-01  4.5843E-01
 Non-SCF case, kpt    3 (  0.40000  0.00000  0.00000), residuals and eigenvalues=
  8.10E-13  5.02E-13  5.44E-13  9.63E-13  5.04E-13  4.65E-13  1.87E-13  4.08E-07
 -1.9501E-01 -5.4901E-02  1.3720E-01  1.3720E-01  2.3717E-01  3.0371E-01
  3.0371E-01  4.6174E-01
 Non-SCF case, kpt    4 (  0.35000  0.00000  0.00000), residuals and eigenvalues=
  3.69E-13  5.03E-13  4.23E-13  3.52E-13  2.29E-13  6.97E-13  2.27E-13  2.00E-05
 -2.0922E-01 -2.9300E-02  1.4049E-01  1.4049E-01  2.4093E-01  3.0648E-01
  3.0648E-01  4.6491E-01
 Non-SCF case, kpt    5 (  0.30000  0.00000  0.00000), residuals and eigenvalues=
  7.69E-13  2.68E-13  6.95E-13  6.17E-13  8.90E-13  1.86E-13  1.27E-12  6.53E-06
 -2.2311E-01  3.6159E-04  1.4505E-01  1.4505E-01  2.4608E-01  3.0846E-01
  3.0846E-01  4.5878E-01
 Non-SCF case, kpt    6 (  0.25000  0.00000  0.00000), residuals and eigenvalues=
  4.54E-13  3.30E-13  4.24E-13  4.14E-13  3.80E-13  4.40E-13  3.96E-13  1.41E-05
 -2.3558E-01  3.2759E-02  1.5079E-01  1.5079E-01  2.5243E-01  3.0768E-01
  3.0768E-01  4.3321E-01
 Non-SCF case, kpt    7 (  0.20000  0.00000  0.00000), residuals and eigenvalues=
  3.35E-13  1.47E-13  3.79E-13  2.08E-13  8.90E-13  6.00E-13  6.05E-13  3.30E-07
 -2.4614E-01  6.7010E-02  1.5749E-01  1.5749E-01  2.5963E-01  3.0254E-01
  3.0254E-01  4.0186E-01
 Non-SCF case, kpt    8 (  0.15000  0.00000  0.00000), residuals and eigenvalues=
  1.15E-13  6.00E-13  5.96E-13  1.89E-13  1.68E-13  5.06E-13  4.55E-12  6.99E-08
 -2.5453E-01  1.0212E-01  1.6472E-01  1.6472E-01  2.6698E-01  2.9367E-01
  2.9367E-01  3.6920E-01
 Non-SCF case, kpt    9 (  0.10000  0.00000  0.00000), residuals and eigenvalues=
  1.38E-13  3.76E-13  7.39E-13  1.81E-13  2.63E-13  1.65E-13  2.27E-13  2.38E-10
 -2.6059E-01  1.3644E-01  1.7170E-01  1.7170E-01  2.7307E-01  2.8369E-01
  2.8369E-01  3.3763E-01
 Non-SCF case, kpt   10 (  0.05000  0.00000  0.00000), residuals and eigenvalues=
  2.72E-13  4.66E-13  8.88E-13  2.49E-13  4.86E-13  2.63E-13  2.20E-12  1.82E-10
 -2.6425E-01  1.6581E-01  1.7708E-01  1.7708E-01  2.7494E-01  2.7578E-01
  2.7578E-01  3.1270E-01
 Non-SCF case, kpt   11 (  0.00000  0.00000  0.00000), residuals and eigenvalues=
  5.04E-13  2.48E-13  2.87E-13  6.80E-13  2.80E-13  1.81E-13  2.45E-13  4.90E-12
 -2.6548E-01  1.7916E-01  1.7916E-01  1.7916E-01  2.7274E-01  2.7274E-01
  2.7274E-01  3.0388E-01
 Non-SCF case, kpt   12 (  0.00000  0.04167  0.04167), residuals and eigenvalues=
  7.10E-13  2.00E-13  9.83E-13  6.04E-13  6.23E-13  2.45E-13  9.73E-13  2.19E-12
 -2.6434E-01  1.7183E-01  1.7442E-01  1.7442E-01  2.6982E-01  2.7886E-01
  2.7886E-01  3.1098E-01
 Non-SCF case, kpt   13 (  0.00000  0.08333  0.08333), residuals and eigenvalues=
  7.58E-13  9.71E-13  7.27E-13  3.76E-13  7.05E-13  6.40E-13  7.90E-12  1.25E-10
 -2.6094E-01  1.5362E-01  1.6293E-01  1.6293E-01  2.6199E-01  2.9448E-01
  2.9448E-01  3.2734E-01
 Non-SCF case, kpt   14 (  0.00000  0.12500  0.12500), residuals and eigenvalues=
  7.83E-13  1.47E-13  4.62E-13  2.45E-13  3.85E-13  6.96E-13  1.13E-11  1.62E-10
 -2.5528E-01  1.3002E-01  1.4879E-01  1.4879E-01  2.5123E-01  3.1542E-01
  3.1542E-01  3.4130E-01
 Non-SCF case, kpt   15 (  0.00000  0.16667  0.16667), residuals and eigenvalues=
  9.81E-13  2.37E-13  5.11E-13  8.85E-13  4.90E-13  2.82E-13  9.77E-13  4.96E-13
 -2.4740E-01  1.0401E-01  1.3434E-01  1.3434E-01  2.3939E-01  3.3633E-01
  3.3928E-01  3.3928E-01
 Non-SCF case, kpt   16 (  0.00000  0.20833  0.20833), residuals and eigenvalues=
  5.57E-13  6.08E-13  6.09E-13  2.66E-13  9.22E-13  4.13E-13  4.34E-11  4.32E-10
 -2.3731E-01  7.6913E-02  1.2067E-01  1.2067E-01  2.2781E-01  3.1546E-01
  3.6486E-01  3.6486E-01
 Non-SCF case, kpt   17 (  0.00000  0.25000  0.25000), residuals and eigenvalues=
  6.64E-14  6.43E-13  7.70E-13  3.09E-13  1.70E-13  6.91E-13  3.22E-09  1.26E-08
 -2.2507E-01  4.9306E-02  1.0831E-01  1.0831E-01  2.1737E-01  2.9131E-01
  3.9160E-01  3.9160E-01
 Non-SCF case, kpt   18 (  0.00000  0.29167  0.29167), residuals and eigenvalues=
  8.78E-13  9.67E-13  7.34E-13  4.78E-13  8.17E-13  2.83E-13  5.26E-09  5.38E-09
 -2.1072E-01  2.1534E-02  9.7577E-02  9.7577E-02  2.0860E-01  2.6846E-01
  4.1915E-01  4.1915E-01
 Non-SCF case, kpt   19 (  0.00000  0.33333  0.33333), residuals and eigenvalues=
  5.14E-13  7.41E-13  9.97E-13  5.97E-13  8.56E-13  3.78E-13  8.70E-09  1.14E-08
 -1.9435E-01 -6.1405E-03  8.8630E-02  8.8630E-02  2.0189E-01  2.4834E-01
  4.4731E-01  4.4731E-01
 Non-SCF case, kpt   20 (  0.00000  0.37500  0.37500), residuals and eigenvalues=
  1.62E-13  4.84E-13  7.18E-13  7.65E-13  4.74E-13  9.95E-13  1.92E-09  3.54E-08
 -1.7605E-01 -3.3472E-02  8.1579E-02  8.1579E-02  1.9754E-01  2.3142E-01
  4.7596E-01  4.7596E-01
 Non-SCF case, kpt   21 (  0.00000  0.41667  0.41667), residuals and eigenvalues=
  4.71E-13  3.84E-13  3.70E-13  5.09E-13  2.90E-13  1.99E-13  2.39E-09  6.24E-08
 -1.5591E-01 -6.0175E-02  7.6504E-02  7.6504E-02  1.9577E-01  2.1789E-01
  5.0499E-01  5.0499E-01
 Non-SCF case, kpt   22 (  0.00000  0.45833  0.45833), residuals and eigenvalues=
  5.29E-13  3.13E-13  6.55E-13  6.27E-13  3.27E-13  9.87E-13  7.35E-07  3.62E-05
 -1.3408E-01 -8.6004E-02  7.3440E-02  7.3440E-02  1.9675E-01  2.0767E-01
  5.3345E-01  5.3346E-01
 Non-SCF case, kpt   23 (  0.00000  0.50000  0.50000), residuals and eigenvalues=
  2.21E-13  2.99E-13  3.68E-13  9.76E-13  2.39E-13  5.28E-13  3.27E-06  2.55E-05
 -1.1071E-01 -1.1071E-01  7.2416E-02  7.2416E-02  2.0066E-01  2.0066E-01
  5.5209E-01  5.5212E-01
 Non-SCF case, kpt   24 (  0.06250  0.53125  0.53125), residuals and eigenvalues=
  3.10E-13  8.87E-13  9.74E-13  5.30E-13  4.53E-13  1.98E-13  2.02E-05  4.19E-05
 -1.1122E-01 -1.0933E-01  6.4058E-02  7.3443E-02  2.0186E-01  2.1320E-01
  5.3971E-01  5.4504E-01
 Non-SCF case, kpt   25 (  0.12500  0.56250  0.56250), residuals and eigenvalues=
  1.65E-13  2.50E-13  9.48E-13  3.06E-13  5.81E-13  8.81E-13  1.50E-04  6.47E-05
 -1.1312E-01 -1.0522E-01  4.6246E-02  7.6502E-02  2.0544E-01  2.4389E-01
  5.1386E-01  5.3626E-01
 Non-SCF case, kpt   26 (  0.18750  0.59375  0.59375), residuals and eigenvalues=
  4.15E-13  3.38E-13  1.59E-13  6.61E-13  2.20E-13  1.98E-13  1.49E-06  1.60E-05
 -1.1750E-01 -9.8386E-02  2.8716E-02  8.1535E-02  2.1131E-01  2.8393E-01
  4.8415E-01  5.0497E-01
 Non-SCF case, kpt   27 (  0.25000  0.62500  0.62500), residuals and eigenvalues=
  2.17E-13  2.16E-13  5.16E-13  1.51E-13  3.09E-13  8.88E-13  5.48E-07  1.12E-05
 -1.2570E-01 -8.8834E-02  1.6726E-02  8.8415E-02  2.1936E-01  3.2899E-01
  4.5488E-01  4.7431E-01
 Non-SCF case, kpt   28 (  0.31250  0.65625  0.65625), residuals and eigenvalues=
  9.32E-13  2.73E-13  1.48E-13  5.18E-13  3.76E-13  8.11E-13  5.55E-09  8.69E-05
 -1.3817E-01 -7.6590E-02  1.2343E-02  9.6976E-02  2.2941E-01  3.7608E-01
  4.2698E-01  4.4719E-01
 Non-SCF case, kpt   29 (  0.37500  0.68750  0.68750), residuals and eigenvalues=
  2.63E-13  5.79E-13  1.83E-13  1.71E-13  4.28E-13  2.25E-13  4.45E-13  6.10E-06
 -1.5397E-01 -6.1685E-02  1.5290E-02  1.0696E-01  2.4114E-01  4.0095E-01
  4.0522E-01  4.3869E-01
 Non-SCF case, kpt   30 (  0.43750  0.71875  0.71875), residuals and eigenvalues=
  4.50E-13  8.80E-13  2.08E-13  2.37E-13  9.33E-13  3.17E-13  3.99E-11  1.07E-06
 -1.7141E-01 -4.4164E-02  2.4179E-02  1.1799E-01  2.5398E-01  3.7705E-01
  3.8787E-01  4.1993E-01
 Non-SCF case, kpt   31 (  0.50000  0.75000  0.75000), residuals and eigenvalues=
  7.53E-13  1.48E-13  5.53E-13  8.57E-13  5.10E-13  2.12E-13  1.45E-12  7.45E-07
 -1.8900E-01 -2.4082E-02  3.7610E-02  1.2958E-01  2.6706E-01  3.5546E-01
  3.6672E-01  4.0440E-01
 Non-SCF case, kpt   32 (  0.56250  0.78125  0.78125), residuals and eigenvalues=
  5.40E-13  3.01E-13  9.11E-13  6.32E-13  1.47E-13  1.20E-13  4.34E-13  3.77E-09
 -2.0571E-01 -1.5221E-03  5.4500E-02  1.4111E-01  2.7885E-01  3.3625E-01
  3.4714E-01  3.9323E-01
 Non-SCF case, kpt   33 (  0.62500  0.81250  0.81250), residuals and eigenvalues=
  7.67E-14  1.61E-13  3.03E-13  5.91E-13  2.07E-13  8.49E-13  1.44E-12  1.20E-06
 -2.2091E-01  2.3406E-02  7.4008E-02  1.5184E-01  2.8745E-01  3.1949E-01
  3.2973E-01  3.8748E-01
 Non-SCF case, kpt   34 (  0.68750  0.84375  0.84375), residuals and eigenvalues=
  8.76E-13  1.62E-13  2.45E-13  5.98E-13  6.54E-13  1.85E-13  3.75E-13  1.42E-07
 -2.3419E-01  5.0538E-02  9.5346E-02  1.6109E-01  2.9135E-01  3.0525E-01
  3.1455E-01  3.8627E-01
 Non-SCF case, kpt   35 (  0.75000  0.87500  0.87500), residuals and eigenvalues=
  6.77E-13  9.01E-13  1.82E-13  4.65E-13  3.10E-13  2.28E-13  3.74E-13  1.81E-06
 -2.4529E-01  7.9559E-02  1.1761E-01  1.6836E-01  2.9098E-01  2.9357E-01
  3.0148E-01  3.8303E-01
 Non-SCF case, kpt   36 (  0.81250  0.90625  0.90625), residuals and eigenvalues=
  2.77E-13  9.62E-13  6.48E-13  2.17E-13  6.49E-13  8.32E-13  2.67E-13  1.67E-09
 -2.5406E-01  1.0991E-01  1.3953E-01  1.7355E-01  2.8447E-01  2.8816E-01
  2.9053E-01  3.6617E-01
 Non-SCF case, kpt   37 (  0.87500  0.93750  0.93750), residuals and eigenvalues=
  3.26E-13  2.94E-13  4.16E-13  5.48E-13  2.18E-13  2.06E-13  1.59E-13  7.12E-11
 -2.6038E-01  1.4026E-01  1.5921E-01  1.7684E-01  2.7795E-01  2.8159E-01
  2.8402E-01  3.3779E-01
 Non-SCF case, kpt   38 (  0.93750  0.96875  0.96875), residuals and eigenvalues=
  8.30E-13  3.01E-13  9.15E-13  6.51E-13  1.54E-13  2.24E-13  2.27E-13  1.53E-12
 -2.6420E-01  1.6685E-01  1.7367E-01  1.7861E-01  2.7404E-01  2.7520E-01
  2.7794E-01  3.1284E-01
 Non-SCF case, kpt   39 (  1.00000  1.00000  1.00000), residuals and eigenvalues=
  2.34E-13  6.95E-13  8.11E-13  4.64E-13  8.11E-13  8.97E-13  5.02E-13  1.30E-12
 -2.6548E-01  1.7916E-01  1.7916E-01  1.7916E-01  2.7274E-01  2.7274E-01
  2.7274E-01  3.0388E-01
--- !ResultsGS
iteration_state: {dtset: 2, }
comment   : Summary of ground state results
lattice_vectors:
- [  0.0000000,   5.0975000,   5.0975000, ]
- [  5.0975000,   0.0000000,   5.0975000, ]
- [  5.0975000,   5.0975000,   0.0000000, ]
lattice_lengths: [   7.20895,    7.20895,    7.20895, ]
lattice_angles: [ 60.000,  60.000,  60.000, ] # degrees, (23, 13, 12)
lattice_volume:   2.6491204E+02
convergence: {deltae:  0.000E+00, res2:  0.000E+00, residm:  9.972E-13, diffor:  0.000E+00, }
etotal    :  -8.52502677E+00
entropy   :   0.00000000E+00
fermie    :   1.68317966E-01
cartesian_stress_tensor: null
pressure_GPa: null
xred      :
- [  0.0000E+00,   0.0000E+00,   0.0000E+00, Si]
- [  2.5000E-01,   2.5000E-01,   2.5000E-01, Si]
cartesian_forces: null
force_length_stats: {min: null, max: null, mean: null, }
...
 Integrated electronic density in atomic spheres:
 ------------------------------------------------
 Atom  Sphere_radius  Integrated_density
    1        2.00000          1.80304533
    2        2.00000          1.80304533
================================================================================
 ----iterations are completed or convergence reached----
 Mean square residual over all n,k,spin=   48.784E-14; max=  99.724E-14
 reduced coordinates (array xred) for    2 atoms
       0.000000000000      0.000000000000      0.000000000000
       0.250000000000      0.250000000000      0.250000000000
 cartesian coordinates (angstrom) at end:
    1      0.00000000000000     0.00000000000000     0.00000000000000
    2      1.34874041039376     1.34874041039376     1.34874041039376
 length scales= 10.195000000000 10.195000000000 10.195000000000 bohr
              =  5.394961641575  5.394961641575  5.394961641575 angstroms
 prteigrs : about to open file tbase3_5o_DS2_EIG
 Eigenvalues (   eV  ) for nkpt=  39  k points:
 kpt#   1, nband=  8, wtk=  1.00000, kpt=  0.5000  0.0000  0.0000 (reduced coord)
  -4.83930   -2.21100    3.66138    3.66138    6.36920    8.18203    8.18203   12.44046
 kpt#   2, nband=  8, wtk=  1.00000, kpt=  0.4500  0.0000  0.0000 (reduced coord)
  -4.97880   -2.00874    3.67946    3.67946    6.39165    8.20580    8.20580   12.47444
 kpt#   3, nband=  8, wtk=  1.00000, kpt=  0.4000  0.0000  0.0000 (reduced coord)
  -5.30638   -1.49394    3.73328    3.73328    6.45364    8.26444    8.26444   12.56455
 kpt#   4, nband=  8, wtk=  1.00000, kpt=  0.3500  0.0000  0.0000 (reduced coord)
  -5.69306   -0.79729    3.82286    3.82286    6.55602    8.33970    8.33970   12.65080
 kpt#   5, nband=  8, wtk=  1.00000, kpt=  0.3000  0.0000  0.0000 (reduced coord)
  -6.07101    0.00984    3.94711    3.94711    6.69614    8.39361    8.39361   12.48410
 kpt#   6, nband=  8, wtk=  1.00000, kpt=  0.2500  0.0000  0.0000 (reduced coord)
  -6.41054    0.89143    4.10321    4.10321    6.86895    8.37237    8.37237   11.78828
 kpt#   7, nband=  8, wtk=  1.00000, kpt=  0.2000  0.0000  0.0000 (reduced coord)
  -6.69788    1.82344    4.28548    4.28548    7.06491    8.23258    8.23258   10.93512
 kpt#   8, nband=  8, wtk=  1.00000, kpt=  0.1500  0.0000  0.0000 (reduced coord)
  -6.92598    2.77892    4.48236    4.48236    7.26490    7.99129    7.99129   10.04632
 kpt#   9, nband=  8, wtk=  1.00000, kpt=  0.1000  0.0000  0.0000 (reduced coord)
  -7.09093    3.71274    4.67229    4.67229    7.43063    7.71954    7.71954    9.18725
 kpt#  10, nband=  8, wtk=  1.00000, kpt=  0.0500  0.0000  0.0000 (reduced coord)
  -7.19061    4.51182    4.81853    4.81853    7.48160    7.50436    7.50436    8.50904
 kpt#  11, nband=  8, wtk=  1.00000, kpt=  0.0000  0.0000  0.0000 (reduced coord)
  -7.22396    4.87519    4.87519    4.87519    7.42159    7.42159    7.42159    8.26902
 kpt#  12, nband=  8, wtk=  1.00000, kpt=  0.0000  0.0417  0.0417 (reduced coord)
  -7.19308    4.67585    4.74609    4.74609    7.34223    7.58825    7.58825    8.46229
 kpt#  13, nband=  8, wtk=  1.00000, kpt=  0.0000  0.0833  0.0833 (reduced coord)
  -7.10051    4.18015    4.43342    4.43342    7.12917    8.01307    8.01307    8.90745
 kpt#  14, nband=  8, wtk=  1.00000, kpt=  0.0000  0.1250  0.1250 (reduced coord)
  -6.94661    3.53792    4.04873    4.04873    6.83625    8.58300    8.58300    9.28724
 kpt#  15, nband=  8, wtk=  1.00000, kpt=  0.0000  0.1667  0.1667 (reduced coord)
  -6.73199    2.83036    3.65544    3.65544    6.51421    9.15197    9.23230    9.23230
 kpt#  16, nband=  8, wtk=  1.00000, kpt=  0.0000  0.2083  0.2083 (reduced coord)
  -6.45751    2.09291    3.28360    3.28360    6.19915    8.58417    9.92841    9.92841
 kpt#  17, nband=  8, wtk=  1.00000, kpt=  0.0000  0.2500  0.2500 (reduced coord)
  -6.12439    1.34169    2.94731    2.94731    5.91487    7.92704   10.65584   10.65584
 kpt#  18, nband=  8, wtk=  1.00000, kpt=  0.0000  0.2917  0.2917 (reduced coord)
  -5.73410    0.58598    2.65520    2.65520    5.67643    7.30519   11.40564   11.40564
 kpt#  19, nband=  8, wtk=  1.00000, kpt=  0.0000  0.3333  0.3333 (reduced coord)
  -5.28863   -0.16709    2.41174    2.41174    5.49364    6.75754   12.17180   12.17180
 kpt#  20, nband=  8, wtk=  1.00000, kpt=  0.0000  0.3750  0.3750 (reduced coord)
  -4.79052   -0.91082    2.21989    2.21989    5.37525    6.29729   12.95157   12.95157
 kpt#  21, nband=  8, wtk=  1.00000, kpt=  0.0000  0.4167  0.4167 (reduced coord)
  -4.24249   -1.63744    2.08179    2.08179    5.32727    5.92916   13.74154   13.74154
 kpt#  22, nband=  8, wtk=  1.00000, kpt=  0.0000  0.4583  0.4583 (reduced coord)
  -3.64843   -2.34029    1.99839    1.99839    5.35381    5.65091   14.51579   14.51617
 kpt#  23, nband=  8, wtk=  1.00000, kpt=  0.0000  0.5000  0.5000 (reduced coord)
  -3.01262   -3.01262    1.97054    1.97054    5.46033    5.46033   15.02324   15.02382
 kpt#  24, nband=  8, wtk=  1.00000, kpt=  0.0625  0.5313  0.5313 (reduced coord)
  -3.02634   -2.97513    1.74311    1.99849    5.49297    5.80134   14.68615   14.83120
 kpt#  25, nband=  8, wtk=  1.00000, kpt=  0.1250  0.5625  0.5625 (reduced coord)
  -3.07814   -2.86329    1.25841    2.08174    5.59028    6.63647   13.98283   14.59249
 kpt#  26, nband=  8, wtk=  1.00000, kpt=  0.1875  0.5938  0.5938 (reduced coord)
  -3.19738   -2.67723    0.78139    2.21869    5.75005    7.72614   13.17432   13.74100
 kpt#  27, nband=  8, wtk=  1.00000, kpt=  0.2500  0.6250  0.6250 (reduced coord)
  -3.42039   -2.41729    0.45514    2.40589    5.96913    8.95232   12.37786   12.90659
 kpt#  28, nband=  8, wtk=  1.00000, kpt=  0.3125  0.6563  0.6563 (reduced coord)
  -3.75982   -2.08412    0.33587    2.63885    6.24266   10.23360   11.61869   12.16862
 kpt#  29, nband=  8, wtk=  1.00000, kpt=  0.3750  0.6875  0.6875 (reduced coord)
  -4.18974   -1.67853    0.41605    2.91041    6.56166   10.91033   11.02662   11.93738
 kpt#  30, nband=  8, wtk=  1.00000, kpt=  0.4375  0.7188  0.7188 (reduced coord)
  -4.66431   -1.20176    0.65794    3.21066    6.91111   10.25995   10.55451   11.42687
 kpt#  31, nband=  8, wtk=  1.00000, kpt=  0.5000  0.7500  0.7500 (reduced coord)
  -5.14291   -0.65531    1.02343    3.52615    7.26708    9.67250    9.97883   11.00433
 kpt#  32, nband=  8, wtk=  1.00000, kpt=  0.5625  0.7813  0.7813 (reduced coord)
  -5.59777   -0.04142    1.48302    3.83977    7.58788    9.14972    9.44606   10.70029
 kpt#  33, nband=  8, wtk=  1.00000, kpt=  0.6250  0.8125  0.8125 (reduced coord)
  -6.01128    0.63691    2.01385    4.13185    7.82182    8.69389    8.97237   10.54377
 kpt#  34, nband=  8, wtk=  1.00000, kpt=  0.6875  0.8438  0.8438 (reduced coord)
  -6.37253    1.37520    2.59450    4.38355    7.92802    8.30631    8.55922   10.51086
 kpt#  35, nband=  8, wtk=  1.00000, kpt=  0.7500  0.8750  0.8750 (reduced coord)
  -6.67466    2.16491    3.20023    4.58143    7.91806    7.98847    8.20382   10.42273
 kpt#  36, nband=  8, wtk=  1.00000, kpt=  0.8125  0.9063  0.9063 (reduced coord)
  -6.91320    2.99090    3.79693    4.72249    7.74076    7.84136    7.90586    9.96396
 kpt#  37, nband=  8, wtk=  1.00000, kpt=  0.8750  0.9375  0.9375 (reduced coord)
  -7.08532    3.81661    4.33236    4.81211    7.56353    7.66234    7.72871    9.19183
 kpt#  38, nband=  8, wtk=  1.00000, kpt=  0.9375  0.9688  0.9688 (reduced coord)
  -7.18924    4.54030    4.72574    4.86022    7.45708    7.48848    7.56306    8.51286
 kpt#  39, nband=  8, wtk=  1.00000, kpt=  1.0000  1.0000  1.0000 (reduced coord)
  -7.22396    4.87519    4.87519    4.87519    7.42159    7.42159    7.42159    8.26902
== END DATASET(S) ==============================================================
================================================================================
 -outvars: echo values of variables after computation  --------
            acell      1.0195000000E+01  1.0195000000E+01  1.0195000000E+01 Bohr
              amu      2.80855000E+01
           diemac      1.20000000E+01
             ecut      1.20000000E+01 Hartree
           enunit1          0
           enunit2          1
           etotal1    -8.5250267707E+00
            fcart1    -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
                      -0.0000000000E+00 -0.0000000000E+00 -0.0000000000E+00
-          fftalg         312
           getden1          0
           getden2         -1
             iscf1          7
             iscf2         -2
           istwfk2       3    0    0    0    0    0    0    0    0    0
                         2    0    0    0    0    0    0    0    0    0
                         0    0    8    0    0    0    0    0    0    0
                         0    0    0    0    0    0    0    0    0
              ixc       -1012
           jdtset        1    2
              kpt1    -1.25000000E-01 -2.50000000E-01  0.00000000E+00
                      -1.25000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01 -3.75000000E-01  0.00000000E+00
                      -1.25000000E-01 -3.75000000E-01  1.25000000E-01
                      -1.25000000E-01  2.50000000E-01  0.00000000E+00
                      -2.50000000E-01  3.75000000E-01  0.00000000E+00
                      -3.75000000E-01  5.00000000E-01  0.00000000E+00
                      -2.50000000E-01  5.00000000E-01  1.25000000E-01
                      -1.25000000E-01  0.00000000E+00  0.00000000E+00
                      -3.75000000E-01  0.00000000E+00  0.00000000E+00
              kpt2     5.00000000E-01  0.00000000E+00  0.00000000E+00
                       4.50000000E-01  0.00000000E+00  0.00000000E+00
                       4.00000000E-01  0.00000000E+00  0.00000000E+00
                       3.50000000E-01  0.00000000E+00  0.00000000E+00
                       3.00000000E-01  0.00000000E+00  0.00000000E+00
                       2.50000000E-01  0.00000000E+00  0.00000000E+00
                       2.00000000E-01  0.00000000E+00  0.00000000E+00
                       1.50000000E-01  0.00000000E+00  0.00000000E+00
                       1.00000000E-01  0.00000000E+00  0.00000000E+00
                       5.00000000E-02  0.00000000E+00  0.00000000E+00
                       0.00000000E+00  0.00000000E+00  0.00000000E+00
                       0.00000000E+00  4.16666667E-02  4.16666667E-02
                       0.00000000E+00  8.33333333E-02  8.33333333E-02
                       0.00000000E+00  1.25000000E-01  1.25000000E-01
                       0.00000000E+00  1.66666667E-01  1.66666667E-01
                       0.00000000E+00  2.08333333E-01  2.08333333E-01
                       0.00000000E+00  2.50000000E-01  2.50000000E-01
                       0.00000000E+00  2.91666667E-01  2.91666667E-01
                       0.00000000E+00  3.33333333E-01  3.33333333E-01
                       0.00000000E+00  3.75000000E-01  3.75000000E-01
                       0.00000000E+00  4.16666667E-01  4.16666667E-01
                       0.00000000E+00  4.58333333E-01  4.58333333E-01
                       0.00000000E+00  5.00000000E-01  5.00000000E-01
                       6.25000000E-02  5.31250000E-01  5.31250000E-01
                       1.25000000E-01  5.62500000E-01  5.62500000E-01
                       1.87500000E-01  5.93750000E-01  5.93750000E-01
                       2.50000000E-01  6.25000000E-01  6.25000000E-01
                       3.12500000E-01  6.56250000E-01  6.56250000E-01
                       3.75000000E-01  6.87500000E-01  6.87500000E-01
                       4.37500000E-01  7.18750000E-01  7.18750000E-01
                       5.00000000E-01  7.50000000E-01  7.50000000E-01
                       5.62500000E-01  7.81250000E-01  7.81250000E-01
                       6.25000000E-01  8.12500000E-01  8.12500000E-01
                       6.87500000E-01  8.43750000E-01  8.43750000E-01
                       7.50000000E-01  8.75000000E-01  8.75000000E-01
                       8.12500000E-01  9.06250000E-01  9.06250000E-01
                       8.75000000E-01  9.37500000E-01  9.37500000E-01
                       9.37500000E-01  9.68750000E-01  9.68750000E-01
                       1.00000000E+00  1.00000000E+00  1.00000000E+00
           kptopt1          1
           kptopt2         -3
         kptrlatt        4   -4    4     -4    4    4     -4   -4    4
          kptrlen1     4.07800000E+01
          kptrlen2     3.00000000E+01
P           mkmem1         10
P           mkmem2         39
            natom           2
            nband1          5
            nband2          8
           nbdbuf1          0
           nbdbuf2          2
           ndtset           2
           ndivsm1          0
           ndivsm2         10
            ngfft          24      24      24
             nkpt1         10
             nkpt2         39
            nstep          20
             nsym          48
           ntypat           1
              occ      2.000000  2.000000  2.000000  2.000000  0.000000
            rprim      0.0000000000E+00  5.0000000000E-01  5.0000000000E-01
                       5.0000000000E-01  0.0000000000E+00  5.0000000000E-01
                       5.0000000000E-01  5.0000000000E-01  0.0000000000E+00
           shiftk      5.00000000E-01  5.00000000E-01  5.00000000E-01
          spgroup         227
           strten1     4.4808635534E-06  4.4808635534E-06  4.4808635534E-06
                       0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
           symrel      1  0  0   0  1  0   0  0  1      -1  0  0   0 -1  0   0  0 -1
                       0 -1  1   0 -1  0   1 -1  0       0  1 -1   0  1  0  -1  1  0
                      -1  0  0  -1  0  1  -1  1  0       1  0  0   1  0 -1   1 -1  0
                       0  1 -1   1  0 -1   0  0 -1       0 -1  1  -1  0  1   0  0  1
                      -1  0  0  -1  1  0  -1  0  1       1  0  0   1 -1  0   1  0 -1
                       0 -1  1   1 -1  0   0 -1  0       0  1 -1  -1  1  0   0  1  0
                       1  0  0   0  0  1   0  1  0      -1  0  0   0  0 -1   0 -1  0
                       0  1 -1   0  0 -1   1  0 -1       0 -1  1   0  0  1  -1  0  1
                      -1  0  1  -1  1  0  -1  0  0       1  0 -1   1 -1  0   1  0  0
                       0 -1  0   1 -1  0   0 -1  1       0  1  0  -1  1  0   0  1 -1
                       1  0 -1   0  0 -1   0  1 -1      -1  0  1   0  0  1   0 -1  1
                       0  1  0   0  0  1   1  0  0       0 -1  0   0  0 -1  -1  0  0
                       1  0 -1   0  1 -1   0  0 -1      -1  0  1   0 -1  1   0  0  1
                       0 -1  0   0 -1  1   1 -1  0       0  1  0   0  1 -1  -1  1  0
                      -1  0  1  -1  0  0  -1  1  0       1  0 -1   1  0  0   1 -1  0
                       0  1  0   1  0  0   0  0  1       0 -1  0  -1  0  0   0  0 -1
                       0  0 -1   0  1 -1   1  0 -1       0  0  1   0 -1  1  -1  0  1
                       1 -1  0   0 -1  1   0 -1  0      -1  1  0   0  1 -1   0  1  0
                       0  0  1   1  0  0   0  1  0       0  0 -1  -1  0  0   0 -1  0
                      -1  1  0  -1  0  0  -1  0  1       1 -1  0   1  0  0   1  0 -1
                       0  0  1   0  1  0   1  0  0       0  0 -1   0 -1  0  -1  0  0
                       1 -1  0   0 -1  0   0 -1  1      -1  1  0   0  1  0   0  1 -1
                       0  0 -1   1  0 -1   0  1 -1       0  0  1  -1  0  1   0 -1  1
                      -1  1  0  -1  0  1  -1  0  0       1 -1  0   1  0 -1   1  0  0
            tnons      0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
                       0.0000000  0.0000000  0.0000000     0.2500000  0.2500000  0.2500000
           toldfe1     1.00000000E-06 Hartree
           toldfe2     0.00000000E+00 Hartree
           tolwfr1     0.00000000E+00
           tolwfr2     1.00000000E-12
            typat      1  1
              wtk1       0.09375    0.09375    0.09375    0.18750    0.09375    0.09375
                         0.09375    0.18750    0.03125    0.03125
              wtk2       1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000    1.00000    1.00000    1.00000
                         1.00000    1.00000    1.00000
           xangst      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       1.3487404104E+00  1.3487404104E+00  1.3487404104E+00
            xcart      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5487500000E+00  2.5487500000E+00  2.5487500000E+00
             xred      0.0000000000E+00  0.0000000000E+00  0.0000000000E+00
                       2.5000000000E-01  2.5000000000E-01  2.5000000000E-01
            znucl       14.00000
================================================================================
- Timing analysis has been suppressed with timopt=0
================================================================================
 Suggested references for the acknowledgment of ABINIT usage.
 The users of ABINIT have little formal obligations with respect to the ABINIT group
 (those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
 However, it is common practice in the scientific literature,
 to acknowledge the efforts of people that have made the research possible.
 In this spirit, please find below suggested citations of work written by ABINIT developers,
 corresponding to implementations inside of ABINIT that you have used in the present run.
 Note also that it will be of great value to readers of publications presenting these results,
 to read papers enabling them to understand the theoretical formalism and details
 of the ABINIT implementation.
 For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] Libxc: A library of exchange and correlation functionals for density functional theory.
- M.A.L. Marques, M.J.T. Oliveira, T. Burnus, Computer Physics Communications 183, 2227 (2012).
- Comment: to be cited when LibXC is used (negative value of ixc)
- Strong suggestion to cite this paper.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#marques2012
-
- [2] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm. 
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [3] Optimized norm-conserving Vanderbilt pseudopotentials.
- D.R. Hamann, Phys. Rev. B 88, 085117 (2013).
- Comment: Some pseudopotential generated using the ONCVPSP code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2013
-
- [4] ABINIT: Overview, and focus on selected capabilities
- J. Chem. Phys. 152, 124102 (2020).
- A. Romero, D.C. Allan, B. Amadon, G. Antonius, T. Applencourt, L.Baguet,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, F.Bruneval,
- G.Brunin, D.Caliste, M.Cote,
- J.Denier, C. Dreyer, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, F.Jollet, G. Jomard,
- A.Martin, 
- H.P.C. Miranda, F.Naccarato, G.Petretto, N.A. Pike, V.Planes,
- S.Prokhorenko, T. Rangel, F.Ricci, G.-M.Rignanese, M.Royo, M.Stengel, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, J.Wiktor, J.W.Zwanziger, and X.Gonze.
- Comment: a global overview of ABINIT, with focus on selected capabilities .
- Note that a version of this paper, that is not formatted for J. Chem. Phys 
- is available at https://www.abinit.org/sites/default/files/ABINIT20_JPC.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#romero2020
-
- [5] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm. 
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- Proc.   0 individual time (sec): cpu=          7.3  wall=          7.3
================================================================================
 Calculation completed.
.Delivered   2 WARNINGs and   5 COMMENTs to log file.
+Overall time at end (sec) : cpu=          7.3  wall=          7.3
You should find the band structure starting at (second dataset):
Eigenvalues (   eV  ) for nkpt=  39  k points:
kpt#   1, nband=  8, wtk=  1.00000, kpt=  0.5000  0.0000  0.0000 (reduced coord)
-4.83930   -2.21100    3.66138    3.66138    6.36920    8.18203    8.18203   12.44046
kpt#   2, nband=  8, wtk=  1.00000, kpt=  0.4500  0.0000  0.0000 (reduced coord)
-4.97880   -2.00874    3.67946    3.67946    6.39165    8.20580    8.20580   12.47444
kpt#   3, nband=  8, wtk=  1.00000, kpt=  0.4000  0.0000  0.0000 (reduced coord)
-5.30638   -1.49394    3.73328    3.73328    6.45364    8.26444    8.26444   12.56455
kpt#   4, nband=  8, wtk=  1.00000, kpt=  0.3500  0.0000  0.0000 (reduced coord)
-5.69306   -0.79729    3.82286    3.82286    6.55602    8.33970    8.33970   12.65080
 ....
One needs a graphical tool to represent all these data. In a separate file (_EIG), you will find the list of k-points and the eigenenergies (the input variable prteig is set by default to 1).
Even without a graphical tool we will have a quick look at the values at L, \Gamma, X and \Gamma again:
kpt#   1, nband=  8, wtk=  1.00000, kpt=  0.5000  0.0000  0.0000 (reduced coord)
-4.83930   -2.21100    3.66138    3.66138    6.36920    8.18203    8.18203   12.44046
kpt#  11, nband=  8, wtk=  1.00000, kpt=  0.0000  0.0000  0.0000 (reduced coord)
-7.22396    4.87519    4.87519    4.87519    7.42159    7.42159    7.42159    8.26902
kpt#  23, nband=  8, wtk=  1.00000, kpt=  0.0000  0.5000  0.5000 (reduced coord)
-3.01262   -3.01262    1.97054    1.97054    5.46033    5.46033   15.02324   15.02382
kpt#  39, nband=  8, wtk=  1.00000, kpt=  1.0000  1.0000  1.0000 (reduced coord)
-7.22396    4.87519    4.87519    4.87519    7.42159    7.42159    7.42159    8.26902
The last \Gamma is exactly equivalent to the first \Gamma. It can be checked that the top of the valence band is obtained at \Gamma (=4.87519 eV). The width of the valence band is 12.1 eV, the lowest unoccupied state at X is 0.585 eV higher than the top of the valence band, at \Gamma.
The Si is described as an indirect band gap material (this is correct), with a band-gap of about 0.585 eV (this is quantitatively quite wrong: the experimental value 1.17 eV is at 25 degree Celsius). The minimum of the conduction band is even slightly displaced with respect to X, see kpt # 21. This underestimation of the band gap is well-known (the famous DFT band-gap problem). In order to obtain correct band gaps, you need to go beyond the Kohn-Sham Density Functional Theory: use the GW approximation. This is described in the first GW tutorial.
For experimental data and band structure representation, see the book by M.L. Cohen and J.R. Chelikowski [Cohen1988].
Important
There is a subtlety that is worth to comment about. In non-self-consistent calculations, like those performed in the present band structure calculation, with iscf = -2, not all bands are converged within the tolerance tolwfr. Indeed, the two upper bands (by default) have not been taken into account to apply this convergence criterion: they constitute a buffer. The number of such buffer bands is governed by the input variable nbdbuf.
It can happen that the highest (or two highest) band(s), if not separated by a gap from non-treated bands, can exhibit a very slow convergence rate. This buffer allows achieving convergence of important, non-buffer bands. In the present case, 6 bands have been converged with a residual better than tolwfr, while the two upper bands are less converged (still sufficiently for graphical representation of the band structure). In order to achieve the same convergence for all 8 bands, it is advised to use nband=10 (that is, 8 + 2).
Using AbiPy to automate the most boring steps¶
The AbiPy  package provides several tools to facilitate the preparation of band structure calculations
and the analysis of the output results. First of all, one can use the abistruct.py  script with
the kpath command to determine a high-symmetry k-path from any file containing structural
information (abinit input file, netcdf output files etc.).
The high-symmetry k-path follows the conventions described in [Setyawan2010].
Let’s try with:
abistruct.py kpath tbase3_5.abi
# Abinit Structure
 natom 2
 ntypat 1
 typat 1 1
 znucl 14
 xred
    0.0000000000    0.0000000000    0.0000000000
    0.2500000000    0.2500000000    0.2500000000
 acell    1.0    1.0    1.0
 rprim
    0.0000000000    5.1080000000    5.1080000000
    5.1080000000    0.0000000000    5.1080000000
    5.1080000000    5.1080000000    0.0000000000
# K-path in reduced coordinates:
# tolwfr 1e-20 iscf -2 getden ??
 ndivsm 10
 kptopt -11
 kptbounds
    +0.00000  +0.00000  +0.00000 # $\Gamma$
    +0.50000  +0.00000  +0.50000 # X
    +0.50000  +0.25000  +0.75000 # W
    +0.37500  +0.37500  +0.75000 # K
    +0.00000  +0.00000  +0.00000 # $\Gamma$
    +0.50000  +0.50000  +0.50000 # L
    +0.62500  +0.25000  +0.62500 # U
    +0.50000  +0.25000  +0.75000 # W
    +0.50000  +0.50000  +0.50000 # L
    +0.37500  +0.37500  +0.75000 # K
    +0.62500  +0.25000  +0.62500 # U
    +0.50000  +0.00000  +0.50000 # X
To visualize the band structure stored in the GSR.nc file, use the abiopen.py script and the command line:
abiopen.py tbase3_5o_DS2_GSR.nc --expose -sns=talk

It is also possible to compare multiple GSR files with the abicomp.py script and the syntax
abicomp.py gsr tbase3_5o_DS1_GSR.nc tbase3_5o_DS2_GSR.nc -e -sns=talk
to produce the following figures:

For further details about the AbiPy API and the GSR file, please consult the GsrFile notebook .